

Declaração Ambiental

Jan-Dez 2018 Jan-Jun 2019

Índice

1. APRESENTAÇÃO DA EMPRESA	3
1.1 LOCALIZAÇÃO DA EMPRESA 1.2.EVOLUÇÃO HISTÓRICA 1.3. PRODUTOS 1.4. MERCADOS / VENDAS 1.5. PRODUÇÃO ANUAL 1.6. RECURSOS HUMANOS 1.7. FORNECEDORES/ MATÉRIAS-PRIMAS	468990
2.DESCRIÇÃO DO PROCESSO DE FABRICO1	4
3. LICENÇA AMBIENTAL2	2
4. SEGURO DE RESPONSABILIDADE CIVIL AMBIENTAL2	3
5.SISTEMA DE GESTÃO AMBIENTAL2	4
5.1.POLITICA AMBIENTAL	5
5.4. CERTIFICADOS	
6. PRINCIPAIS ASPECTOS AMBIENTAIS3	9
6.1 ASPECTOS AMBIENTAIS DIRECTOS SIGNIFICATIVOS	
7. OBJECTIVOS E PROGRAMAS AMBIENTAIS4!	5
7.1 ANO DE 2018	7
8. COMPORTAMENTO AMBIENTAL EM 201849)
8.1. EMISSÕES GASOSAS. 50 8.2. COMPOSTOS ORGANICOS VOLÁTEIS. 50 8.3. BIODIVERSIDADE. 60 8.4. RUÍDO. 62 8.5. RESÍDUOS. 61 8.6. ENERGIA. 62 8.7. CONSUMO DE MATÉRIAS-PRIMAS. 73 8.8. CONSUMO DE ÁGUA. 70 8.9. EQUIPAMENTO DE AR CONDICIONADO. 83 8.10. GESTÃO DE EMERGÊNCIA. 86 8.11. ANÁLISE DA CONFORMIDADE DOS REQUISITOS LEGAIS. 86	9125593524
9. ABREVIATURAS90)
10. DADOS DO VERIFICADOR AMBIENTAL9:	L
11. DECLARAÇÃO DO VERIFICADOR AMBIENTAL SEG. ANEXO VII	2

1. Apresentação da Empresa

1.1. Localização da Empresa

UNIDADE INDUSTRIAL MAIA

10 KM DA CIDADE DO PORTO

12 KM DO PORTO DE MAR DE LEIXÕES

8 KM DO AEROPORTO INTERNACIONAL DE F. SÁ CARNEIRO

500 M DA SAÍDA DA A41 (MATOSINHOS/ERMESINDE) QUE LIGA ÀS AUTOESTRADAS A3 E A28

UNIDADE INDUSTRIAL DE ÁGUEDA

80 KM A SUL DA CIDADE DO PORTO

86 KM DO PORTO DE MAR DE LEIXÕES, ATRAVÉS DA AUTOESTRADA A1

25 KM DE AVEIRO, QUE TEM PORTO DE MAR

Nota: Não incluído no âmbito da declaração devido a ser uma unidade muito recente não tem ainda valores consolidados quer de produção quer de indicadores

1.2. Evolução Histórica

A PortCast nasce em Junho de 1998 fruto de uma joint – venture entre o grupo Intermet e o grupo Jorge Mello.

Em Abril de 2007 a PortCast é adquirida pela Sakthi Group, mudando a sua designação social para Sakthi Portugal, SA.

A Sakthi Portugal é uma empresa detida pelo Grupo Sakthi, sediado em Coimbatore, na Índia.

O Grupo Sakthi está presente em diversos mercados e atua em setores muito distintos como:

- Transporte de passageiros e mercadorias
- Produção de açúcar
- Laticínios
- Microcrédito
- Representação exclusiva da Suzuki
- Tamil Nadu
- Automóvel
- Ensino (25000 alunos)Saúde (4 hospitais)

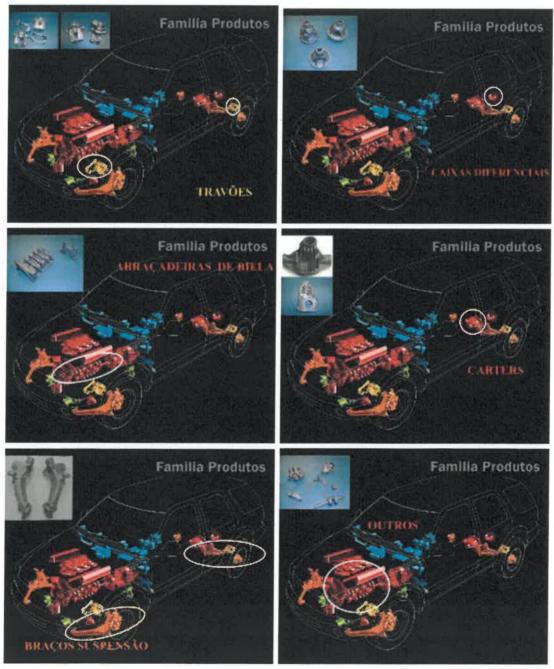
- Real Estate
- **UNIDADE INDUSTRIAL MAIA: 85.000 TON**
- **UNIDADE INDUSTRIAL ÁGUEDA: 35.000 TON**
 - NDIA: 75.000 TON

O grupo dispõe de meios produtivos para o fabrico de médias e grandes série de peças em ferro fundido nodular vazadas em areia verde e destinadas principalmente à indústria automóvel.

Em 2015 foi criado pela Sakthi Portugal e a Sakthi Portugal SP21, o Center for Innovation and Technology N.Mahalingam-CITNM com atuação nas áreas da ID&I, Educação e Formação. Com sede em Águeda, é um projeto que visa preparar as futuras gerações num ambiente Escola-Empresa de Excelência (a Sakthi Portugal SP21 e o CITNM encontra-se ainda fora do âmbito do registo no EMAS).

No âmbito da formação da comunidade onde se insere, o centro tem a decorrer ações de formação que se destinam à qualificação de quadros técnicos e cursos de verão para a população jovem.

O Centro tem como missão: potenciar o desenvolvimento e disseminação do conhecimento e da inovação no campo da metalurgia, materiais e automóvel; contribuir para a formação e perpetuação do conhecimento para as gerações futuras; fomentar o networking para cooperação e transferência de tecnologia entre empresas, universidades, centros de investigação e outras entidades. O CITNM assume como valores: Inovação, Inclusão, Partilha, Proximidade, Sustentabilidade e Compromisso.


Site: www.citnm.pt

1.3. Produtos

A Sakthi Portugal é uma fundição especializada na produção de componentes em ferro fundido Nodular destinados principalmente à indústria automóvel do mercado internacional.

Sendo a Sakthi Portugal uma unidade fabril que se destina a produzir 100% para a indústria automóvel produtos de segurança crítica que se destinam a sistemas de travagem, transmissão, suspensão e motor que a seguir se exemplifica:

Os produtos da Sakthi Portugal têm uma vida mínima de 5 anos sendo a sua taxa de reciclagem no final de vida de 100%.

No Gráfico abaixo caracterizam-se os volumes anuais de produção em toneladas de metal fundido aproveitado.

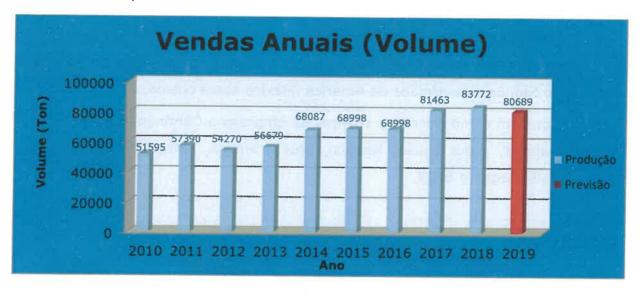


Gráfico 1 - Vendas Anuais (Volume)

1.4. Mercados / Vendas

A atividade comercial da Sakthi Portugal está orientada fundamentalmente para o mercado externo. A maior parte do volume de negócios da empresa destina-se à exportação, nomeadamente para países como a França, Alemanha, Inglaterra, Africa do Sul, Estados Unidos da América, México entre outros.

Constam como principais clientes da Empresa a Continental Automotive, TRW, PSA, Daimler, Dana Spicer, Neapco, Bosch, Magna, GKN, CIE Automotive, VW, Ford, Volkswagen e BMW.

A seguir apresenta-se a evolução das vendas nos últimos anos, em milhões de Euros.

Gráfico 2 - Vendas Anuais

1.5. Produção Anual

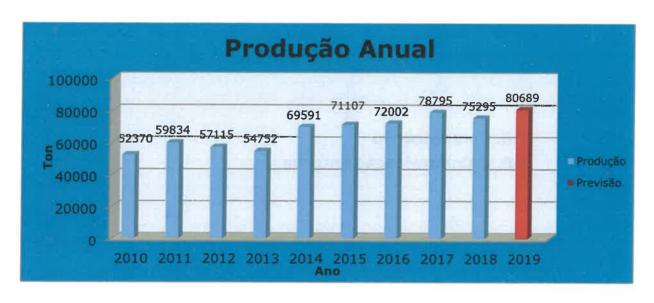


Gráfico 3 - Produção anual

1.6. Recursos Humanos

Gráfico 4 - Evolução do Quadro do Pessoal (à data de 31.12)

1.7. Fornecedores/ Matérias-primas

Grande parte das compras efetuadas pela Sakthi Portugal são feitas no mercado nacional, sendo as restantes oriundas do Reino Unido, Espanha, França, Alemanha e Noruega.

As nossas principais matérias-primas são a sucata de aço, nodularizante, areia natural e Ecosil PT (mistura de Bentonite e pó de carvão).

1.8. Comunicação

1.8.1. Comunicação Interna

Existe há já alguns anos na Sakthi Portugal, uma Comissão de Ambiente Higiene e Segurança, que é constituída por representantes dos Trabalhadores, Medicina do Trabalho, Recursos Humanos, Unidade de Negócios e Administração.

Esta Comissão reúne regularmente para discutir aspetos relacionados com o Ambiente, Higiene, Segurança e Saúde no Trabalho.

Outra ferramenta utilizada pela empresa é a existência de um plasma na cantina onde é, constantemente, colocada informação.

Durante o ano de 2018 foram registados três Alerta Ambiental, comunicado pelos representantes dos Trabalhadores, tendo sido definidas ações imediatas e corretivas que seguidamente resumem:

SEG-022 - Alerta nº 16/18:

- Cheiro Intenso Amina no interior da nave fabril, nomeadamente Macharia e Vazamento Disas

Ação Imediata: Calibração do Scrubber para garantir correcta neutralização da amina.

<u>Acão Corretiva</u>: Substituição mangas do filtro, verificação da estanquidade sistema nas máquinas de macharia, purga e limpeza do Srubber

SEG-022 - Alerta nº 22/18:

- Fuga de água na zona jardim junto campo futebol, devido rutura de tubagem provocado por queda de contentores

Ação Imediata: Reparação da respetiva tubagem

<u>Acão Corretiva</u>: Sensibilização equipa da Logística para não colocação de contentores fora das áreas definidas.

SEG-022 - Alerta nº 35/18:

- Risco de inundação devido a tampa de saneamento se encontrar danificada.

Ação Imediata: Reparação da tampa de saneamento

<u>Acão Corretiva</u>: Reforçar as tampas de saneamento que se encontram sobre carga da passagem de camiões.

Macharia

O estudo de redução do consumo de ligantes e resinas na preparação de areia ligada quimicamente, continua em curso, em estrita colaboração com o fornecedor de matérias-primas, tendo como objetivos a redução dos consumos de amina, a redução do ciclo da máquina e a redução dos tempos de gaseio (ligação das areias com resinas e ligantes). Paralelamente, implementaram-se outros ganhos que se devem à automatização do sistema de cargas por forma a evitar perdas associadas ao seu manuseamento.

1.8.2. Comunidade externa

A Sakthi Portugal devido à sua constante preocupação na preservação do meio ambiente tem colaborado com o pelouro de Ambiente e da Qualidade de Vida da Câmara Municipal da Maia em ações de sensibilização de educação ambiental.

Destas ações constam a compra de duas viaturas Smart coupé e de oito bicicletas em 2004 para apoiar ações de sensibilização e educação ambiental promovidas pelo pelouro do Ambiente e Qualidade de vida da Câmara Municipal da Maia.

Durante o ano de 2003 recebeu os representantes da Junta de Freguesia de Vermoim que vieram prestar um agradecimento pela evolução no desempenho ambiental verificado na empresa nos últimos anos.

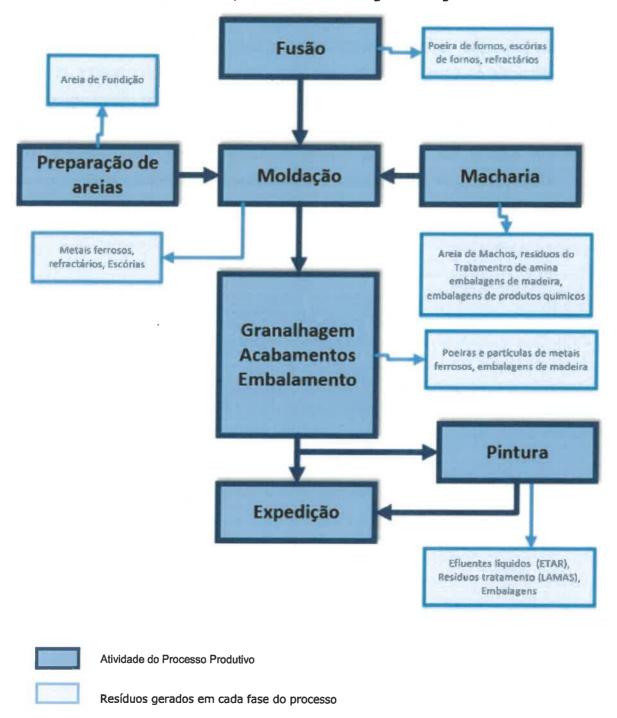
No ano de 2005 a Sakthi Portugal apadrinhou um animal (um Tigre) do Zoo da Maia.

Ao longo dos anos a empresa tem mantido uma estreita colaboração com as universidades no que diz respeito à sua abertura para celebração de protocolos de estágios bem como de estágios profissionais, proporcionando assim aos alunos uma visão mais real do mercado de trabalho.

A empresa ao longo dos anos tem recebido os vizinhos, estando sensível às suas preocupações.

Em 2009 a Sakthi Portugal obteve a Licença Ambiental nr 309/2009, estando a empresa comprometida à emissão de relatórios anuais de desempenho ambientais, relativamente à sua performance ambiental, para a APA.

A SAKTHI teve uma laboração normal praticamente constante ao longo de todos os meses do ano, com exceção dos meses de Agosto e Dezembro, devido ao período de férias.


No entanto é de realçar que face à implementação de um conjunto de medidas internas denominadas "projeto APOLO" e à implantação das novas linhas de acabamento Kasanova foi possível obter peças resultantes da moldação com uma qualidade final muito superior, diminuindo o tempo gasto com os acabamentos finais de prensas e rebarbagem e em consequência verificou-se um aumento da capacidade de produção, o que permitiu a otimização dos consumos específicos de energia elétrica e de água. Esta alteração levou ao pedido de desativação da chaminé FF9, já que houve a eliminação do processo de acabamento por rebarbagem.

Em Agosto de 2014, a Sakthi Portugal obteve nova Licença ambiental LA nº309/0.1/2014 com a inclusão da atividade de tratamento e revestimento de metais por cataforese, que se encontra a laborar desde Outubro de 2014.

2. Descrição do processo de fabrico

O processo de fabrico da Sakthi Portugal é constituido por diversos sub processos, estando os mais relevantes representados no diagrama seguinte.

No diagrama estão também representados os diversos resíduos gerados nos vários processos de fabrico.

Fusão

O Processo de fabrico de uma peça fundida inicia-se no parque de sucatas, onde se encontra armazenada a matéria-prima. Neste parque (coberto), a movimentação da sucata e dos retornos (partes não aproveitadas que voltam ao inicio do processo) é feita através de uma ponte rolante associada a um eletroíman, a matéria-prima é pesada e transportada para a plataforma de fusão por ação de baldes elevadores, até às tremonhas de carregamento que vão alimentar os fornos.

Na plataforma de fusão existem 4 fornos de fusão, um "ABB" e um "ABP", de 8300 KW de potência cada dois um, fornos "INDUCTOTHERM", cada um com 3500 KW de potência. arrefecimento dos fornos é feito com água em circuito fechado, tendo como uma das etapas a passagem por uma piscina no exterior da fábrica.

Nestes fornos, para além de transformar a matéria do estado sólido para o estado líquido, são também adicionados alguns materiais com objetivo de efetuar a correção da composição química.

Quando o metal atinge a temperatura e a composição química desejada é transferido por intermédio de colherões ou caleira, para os fornos de manutenção, designados por "ASEA I" e "ASEA II" com capacidade de armazenar 42 e 25 Ton respetivamente, têm como função evitar grandes variações de temperatura e composição química, além de servirem de stock para o sector seguinte, as linhas de moldação.

Os fornos são elétricos, incluindo os fornos de manutenção.

Macharia

É na Macharia que se produzem os "machos" indispensáveis para a operação de Moldação de peças com cavidades complexas, visto serem os responsáveis pelos espaços ocos na peça final. Nem todas as peças produzidas na Sakthi Portugal

precisam de machos no seu processo de fabrico.

Estes ("machos") são constituídos por um aglutinado de areia, resina, endurecedor e catalisador. Neste processo a areia é inicialmente transportada para uma plataforma, onde vai ser misturada com a resina e o endurecedor, sendo depois

conduzida para as máquinas de sopragem de areia.

Para a produção de machos existem seis máquinas de sopragem de areia, que injetam a mistura (areia, resina e endurecedor) na caixa de molde, onde posteriormente é soprado o gás de amina que vai atuar como um catalisador da reação de solidificação do macho.

O interior das máquinas está provido de aspiração, onde são recolhidos os gases resultantes da reação, as bancadas de trabalho da Macharia também têm aspiração. Em alguns casos os machos são ainda pintados à saída da máquina para melhorar o seu acabamento. Esta pintura é feita por imersão, no entanto a grande maioria dos machos não precisam desta pintura.

Preparação de areias

A areia de moldação é preparada numa torre que é composta por vários equipamentos tais como: silos de areia nova, silos de areia usada, silos Bentonite e pó de carvão; tapetes transportadores; arrefecedores e misturadoras de areia.

Nesta torre procede-se à mistura de areia nova, areia usada (estes circuitos de areias são fechados existindo apenas a necessidade de retirar a areia em excesso), Bentonite (argila que agrega os grãos de areia para que possam ser moldáveis), o pó de carvão (permite que o contacto do ferro com a areia não seja tão agressivo) e ainda água que é o elemento que vai permitir a ligação de todos estes ingredientes. As cargas de areia preparadas pelas galgas (misturadoras) rondam normalmente as 2 toneladas.

A Sakthi Portugal tem duas torres para preparação de areia, uma denominada Space que prepara a areia para as linhas de moldar Disas e que tem uma capacidade de 140 Ton/h de areia e a torre de areias GF que prepara areia para a linha de moldar GF tem uma capacidade de 52 Ton/h

Moldação

Na Sakthi Portugal existem quatro linhas de moldação: a moldação "GF – George Ficher"; a moldação "DISA MK5", a moldação "DISA 230T" e "DISA 230P". As linhas de DISA 230 e MK5 são unidades com linha de apartação vertical (moldes na

vertical), com cadências de 520 moldes/hora e 400 moldes/hora respetivamente.

A linha de "GF" é uma unidade com linha de apartação horizontal (moldes na horizontal) e com uma cadência de 100 moldes/hora.

Nestas linhas são construídos os moldes

em areia (preparada na torre de areias) conformada por alta pressão, onde posteriormente e se for necessário serem colocados os machos, constituindo assim o "bolo de moldação". Depois de fechado, o bolo de moldação está pronto para o vazamento do ferro.

Após o vazamento, os bolos são submetidos a um arrefecimento, sendo posteriormente conduzidos para tambores rotativos responsáveis pela operação de abate do molde. Uma vez desfeito o molde, são separadas as peças das areias. Estas areias são recolhidas para o circuito de areias para posterior reutilização.

Parte dos gitos (ferro que permitiu encher as peças) são quebrados nos tambores de abate, e os restantes são quebrados recorrendo a cunhas hidráulicas e martelos.

As peças moldadas estão agora prontas para entrarem nas linhas de acabamento.

Acabamentos

As peças, depois de separadas, são colocadas em máquinas chamadas granalhadoras que projetam esferas de aço (granalha) contra as peças, limpando-as. Depois de limpas, as peças estão prontas para serem controladas de acordo com as especificações dos clientes.

Em 2014, foram feitas melhorias nesta área, que originaram desmantelamento de equipamentos, como rebarbadoras, prensas, até então. utilizadas Foram criadas linhas ligadas diretamente às granalhadoras, criando

fluxo contínuo, onde ao longo de um tapete apenas se realizam operações de controlo. Testes de controlo que, dependendo da exigência, podem variar desde o controlo dimensional até aos ultra-sons ou controlo por correntes de Eddy (Magna teste) que têm como objetivo controlar a qualidade interna das peças. Esta alteração foi comunicada à entidade coordenadora de licenciamento via portal empresa (Junho 2014)

Em algumas referências, para se garantir um requisito do cliente, não oxidação das peças durante o transporte, as peças são revestidas com um líquido protetor, "amigo do ambiente", ou seja isento de COV´S¹). Esse revestimento é realizado através de um processo manual, um borrifo sobre as camadas das peças durante o processo de embalamento.

No final da linha, após um período de quatro horas para arrefecimento, o produto está pronto para ser expedido para o cliente.

Autorizado através do Oficio da APA S22602-201404-DGA-DGAR o qual exclui a Sakthi da abrangência do regime COV.

Tratamento de Superfície

A pintura por cataforese é uma pintura por eletrodeposição, ou seja às peças é aplicada uma carga elétrica (cátodo) e à tinta é aplicada a carga elétrica oposta (ânodo). O fecho do circuito elétrico durante a imersão faz com que a tinta se "agarre" á superfície da peça.

A instalação de tratamento de superfícies metálicas por fosfatação microcristalina de zinco e pintura por cataforese, é dividida em cinco etapas, que são:

- **Desengorduramento** que faz a limpeza da superfície da peça de forma a garantir melhor aderência da tinta,
- Lavagem com afinação de grão, que uniformiza e diminui a dimensão do

grão da peça a ser pintada,

- **Fosfatação microcristalina tricatiónica**, prepara a superfície da peça para receber e reter a tinta, aumentando a resistência contra corrosão proporcionando maior aderência,
- **Pintura de cataforese** processo onde a peça é inserida numa tina com a solução da tinta a ser aplicada, a tinta adere à peça como resultado de um campo elétrico aplicado à solução de tinta propriamente dita e
- Secagem das peças em forno.

Este processo só entrou em funcionamento em Outubro de 2014.

3. Licença Ambiental

À Sakthi Portugal, foi-lhe concedida a licença Ambiental Nº 309/0.1/2014 nas seguintes condições:

Atividade Económica	CAE Ver. Nr.3	Designação CAE	Categoria PCIP	Capacidade Instalada
Principal	24510	Fundição Ferro Fundido	2.4	334,4 Ton/dia
Secundária	25610	Tratamento e revestimento de metais	2.6	49,18 m³

PCIP - Prevenção e Controlo Integrados de Poluição

Sendo a presente licença válida até 26 de Agosto de 2019, encontra-se a decorrer o processo de renovação da Licença Ambiental, submetido em 08-03-2019, tendo a Sakthi rececionado o Oficio da APA com a ref. S018756-201903-DGLA.DEI de 31-03-2019 que atesta a submissão no Siliamb do processo PL 2019012500234 (renovação da Licença Ambiental) e que comunica a prorrogação do prazo de validade da Licença em questão até à data de emissão da decisão sobre este processo.

Em Maio de 2017, após notificação do INE com alteração do CAE para 29320, foi solicitado junto da entidade coordenadora a alteração de 24510 para 29320.

Nos termos da legislação relativa à Prevenção e Controlo Integrados da Poluição (PCIP), é concedida a Licença Ambiental ao operador

SAKTHI Portugal, S.A.

com o Número de Identificação de Pessoa Coletiva (NIPC) 504 202 219, para a instalação

SAKTHI Portugal, S.A.

Sita em Rua lorge Ferreirinha, 679 Vermoim, friquesia e concelho da Maia, para o exercicio da atividade de

Fundição de Ferro

incluida na categoria 2.4 do Anexo I do Decreto Lei n.º 127/2013, de 30 de Agosto, e classificada com a CAE_{Nexis} n.º 24510 (Fundição de ferro fundido) e de acordo com as condições fixadas no presente documento.

A presente licença é válida até 26 de agosto de 2019

Amadora, 26 de agosto de 2014

A voral do Conselho Diretivo da APA, LP.

mês Diogo

4. Seguro de Responsabilidade Ambiental

Através da subscrição seguro da GENERALI de Responsabilidade Ambiental, e dos critérios subjacentes à respetiva avaliação de risco tornou-se possível à Sakthi Portugal, a partir de Março de 2010, evidenciar conformidade com o DL 147/2008, no que respeita à cobertura de Seguro de Responsabilidade Ambiental inerente aos riscos ambientais que a Sakthi Portugal pode incorrer através da sua atividade.

DECLARAÇÃO AMBIENTAL

5. Sistema de Gestão Ambiental

5.1. Politica Ambiental

Política Sistema Gestão Integrada Qualidade, Ambiente e Segurança

A Política Gestão Integrada visa tornar a Sakthi num fomecedor de referência para os clientes atuais e futuros.

Tem comp base as sequintes perspetives:

- Satisfação e Segurança dos colaboradores
- Orientação Cliente
- Responsablikdade Social
- Responsabilidade Anthiental
- Responsabilidade com os stakeholders

Suportado por capacidade de desenvolvimento e inovação para produtos mais leves e seguros, recidência e energeticamente compatíveis com as políticas da empresa.

Os seis pilares para esta Politica são:

Pessoas

Retenção de talentos, motivação e trabalho em equipa e satisfação dos colaboradores são essenciais para o born desempenho da Sakthi Portugal. Asseguramos condições de trabalho que zelam pela saúde e a segurança de todos os colaboradores e seu desenvolvimento pessoal, bem como o comprimento dos respetivos requisitos legais/laborais e regulamentares.

Medimos a satisfação dos colaboradores, desenvolvendo programas de melhoria da motivação e satisfação.

Segurança e Saude no Trabalho

Melhoramos as condições de Segurança, eliminando parigos e reduzindo riscos de forma a prevenir os acidentes a as lesões no trabalho.

Envolvemos a estrutura dos colaboradores em programas de redução de risco e implementação dos comportamentos SEQUIOS

Os colaboradores e suas estruturas são parte ativa na melhoria do desempenho dos programas de segurança de saúde no

Estas atividades são monitorizadas através de um conjunto de objetivos que cumprem com todos os requisitos legais é todas as partes interessadas.

Consultar e fomentar a participação das pessoas que trabalham na Saktos Portugal.

Orientação Cilente

A base do nosso negócio é a conquista e manutenção de criente oferecendo soluções que acrescentam valor em termos de inovação, qualidade, babio impacto ambiental, segurança e preço-

Inovação

Desenvolvemos em parceria com os nossos cientes e outras partes interescidas programas de inovação de forma a consolidar o crescimento da Sakthi Portugal e propor soluções olternativas para produtos o processos.

Responsabilidade Social

A gestão e o controlo de riscos e feita de forma a assegurar a confiança dos colaboradores, parceiros e outros stakeholders. Respeitamos os direitos humanos, cumpatibilizados com solidaz financeira de forma a assegurar a perenidade da Empresa e seu impacto na sociedade envolvente.

A empresa dispide de um guta de boas práticas sociais no qual contempia a não discriminação, bem como ladica as melhores práticas da responsabilidade social.

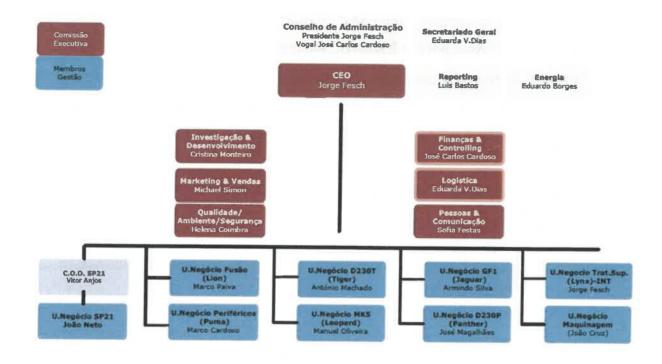
Responsabilidade Ambiental

100% de nossa produção/produto é recidável.

Helhorarmos de forma continua o nosso desempenho ambiental.

Cumprimos com os requisitos legais, regulamentares e estatuérios estabelecidos, de forma a garantir a conformidade com todas as suas corigações.

Temos uma sixude proactiva relativamente à proteção do Ambiente.


Prevenção, monitorização e eliminação de fatores de poluição.

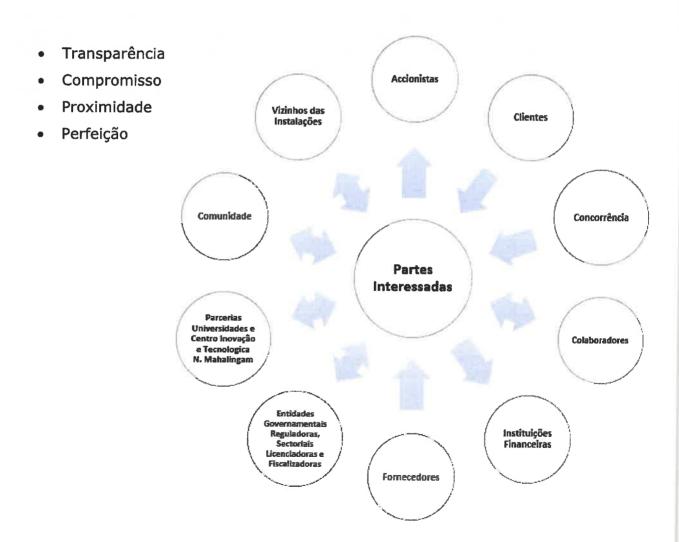
Interagimos com a sociedade envolvente e os stakeholders comunicando a nossa política de Gestão Integrada e as nossas "Best Practices", (Registo Emas)

A Administração 🕟 🗽

Data: 20.09.2019

5.2. Organização funcional

5.3. Sistema de Gestão Ambiental

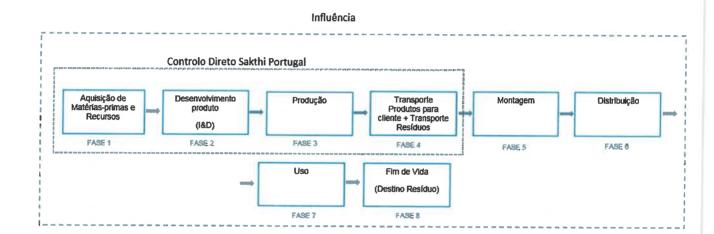

Contexto da Sakthi Portugal

A Sakthi Portugal é acima de tudo uma empresa que produz conhecimento, e como mencionado na sua Visão, somos uma empresa de "pessoas para pessoas antecipando e oferendo soluções", o qual o seu produto final são componentes de Segurança Critica para a Industria Automóvel.

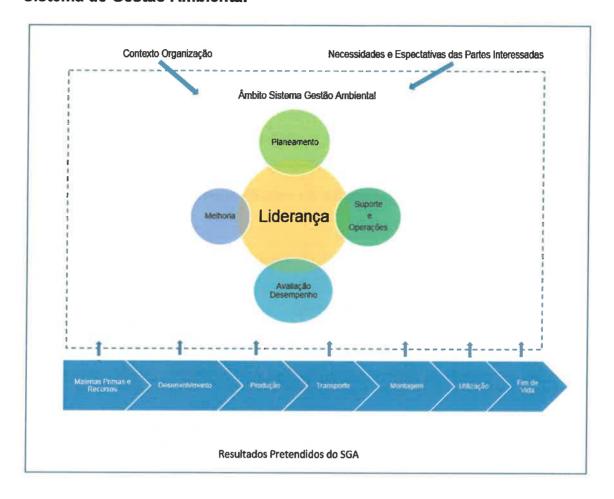
A Sakthi Portugal é uma empresa de relevância Nacional e Internacional o qual a partir da identificação das necessidades das partes interessadas e das oportunidades e ameaças internas e externas à organização focaliza-se na sua Missão:

"Entregar à próxima geração melhor do que aquilo que recebemos".

Os Valores da Sakthi são:



Ciclo Vida Produto


A Sakthi Portugal implementou o seu Sistema Gestão Ambiental tendo em perspetiva o Ciclo de Vida (CV) do seu produto, para um esforço de melhoria contínua do seu desempenho ambiental. Isso é realizado através do desenvolvimento de novos produtos, processos, matérias e métodos de trabalho. Esforço para utilização de matérias-primas, energia, água e outros bens, considerando o ciclo de vida do produto através da produção, utilização e o ser fim de vida.

O produto Sakthi Portugal depois do veículo desmantelado é reciclado a 100%.

Sistema de Gestão Ambiental

O Sistema de Gestão Ambiental implementado pela Sakthi Portugal encontra-se estruturado com os requisitos da norma ISO 14001, que se encontra certificado pela empresa TÜV Rheinland Portugal, Lda. (Grupo TÜV Rheinland) desde 2002. No decorrer do ano de 2004, a Sakthi Portugal adaptou o seu sistema de Gestão Ambiental de forma a cumprir também com o regulamento do Sistema Comunitário de Eco gestão e Auditoria, Regulamento (CE) nº 1221/2009 de 25 de Novembro (EMAS), tendo obtido o registo em Outubro de 2007.

Esta Declaração Ambiental de 2018 é uma atualização com os dados da performance da empresa, constituindo a 3ª Renovação do Registo EMAS de acordo com o Regulamento (CE) 1221/2009 de 25 de Novembro, alterado pelo Regulamento (CE) 2017/1505 de 28 de Agosto e pelo Regulamento (CE) 2018/2026 de 19 de Dezembro.

Este sistema é baseado nos seguintes cinco passos:

- 1. Política A administração da empresa define a política ambiental da empresa (linhas de orientação) comprometendo-se com o cumprimento da legislação aplicável, com a prevenção da poluição e que tenha como um dos seus objetivos a melhoria contínua. A política definida pela Sakthi Portugal foi distribuída a todos os trabalhadores e encontra-se disponível às partes interessadas na Portaria da empresa, site da empresa e na Declaração Ambiental.
- 2. Planeamento Esta fase consiste formular um plano que dê cumprimento à política ambiental. Durante esta fase a empresa caracteriza o contexto da organização, os requisitos das partes interessadas e identifica todos os seus aspetos ambientais (Elemento da atividade, produto ou serviço de uma organização que pode influenciar o ambiente) classificando-os por ordem de importância, faz também parte desta fase a identificação e atualização de toda a legislação aplicável a sua atividade, a Sakthi Portugal optou por contratar a uma empresa do exterior o serviço de atualização da legislação recebendo todos os meses on-line toda a informação atualizada.

Terminado este levantamento (aspetos + legislação) a empresa define os seus objetivos e metas ambientais traçando um programa anual para os atingir.

3. **Implementação** Este terceiro passo implica pôr o plano em andamento, providenciando recursos e meios para atingir a política ambiental os objetivos e metas traçados anteriormente. É nesta fase que se definem as responsabilidades de todas as pessoas ligadas à gestão ambiental, as necessidades de formação, se define recursos necessários e que se prepara todo o tipo de documentação necessária para suportar toda a gestão ambiental.

Na Sakthi Portugal a documentação ambiental encontra-se organizada em 4 níveis hierárquicos:

Manual do Sistema de Gestão Qualidade, Ambiente e Segurança, Licença Ambiental e Declaração Ambiental no nível mais elevado num segundo nível encontram-se os procedimentos onde são definidas tarefas e responsabilidades, quem faz o quê, quando e como é feito e o respetivo Plano de Segurança Interno, bem como respetivos Relatórios do Desempenho Ambiental para Agencia Portuguesa Ambiente. No terceiro nível estão as instruções de trabalho onde se descreve aspetos mais operacionais, como fazer todo o controlo operacional do sistema de gestão ambiental. Por último encontram-se os impressos / registos para demonstrar a conformidade do sistema, todos os impressos estão codificados.

- 4. Verificação e ações corretivas Neste 4º passo a organização mede e avalia a sua performance ambiental, recorrendo a auditorias ao sistema de gestão ambiental para poder detetar possíveis desvios bem como oportunidades de melhoria através de empresas acreditadas (sempre que for possível) proceder a medições dos vários parâmetros ambientais (emissões, ruído...)
 Sempre que deteta uma anomalia importante ao sistema proveniente duma auditoria ou de uma reclamação ambiental esta é tratada através de um procedimento interno de não conformidade, onde se define um grupo de trabalho e um plano de ação com responsáveis e prazos para eliminar a causa do desvio encontrado.
- 5. **Revisão pela Direção** o passo final tem como objetivo fazer uma revisão ao sistema com o grande objetivo da melhoria contínua da performance ambiental.

5.4. Certificações

Certificado

Norma de controlo

ISO 14001:2015

Nº de reg. do certific.

1 02 08206

Titular do certificado:

SAKTHI Portugal, S.A. Rua Jorge Ferreirinha, 679

4470-314 Maia Portugal

Âmbito:

Produção de Peças de Ferro Fundido Nodular Bruto ou Pintadas

por Cataforese.

Através de uma auditoria, relatório nº 1 02 08208 em 2018-06-22,

comprovou-se o cumprimento dos requisitos da norma

Validade:

Este certificado é válido de 28.09.2018 a 27.09.2021,

11.12.2018

Pac

ARDIO MONEC 17021-1 Sistemas de Gristan Business Streem Manager Systems TUV Rheinland Portugal, Lds. Rue Dr. Ant. Loursing Sorges, 9, 3*

1495-131 Algés

A validade deste certificado pode ser confirmada através de consulta do stis www.certipedia.com

www.tuv.pt

A TÜVRheinland® Precisely Right.

Figura 1 - Certificado da Norma ISO 14001:2004

Certificado

Norma de controle

ISO 50001:2011

N° de reg. do certific.

01 407 1823559

Empresa:

SAKTHI Portugal, S.A. Rua Jorge Ferreirinha, 679 P - 4470-314 Main

Campo de aplicação:

Produção de Peças de Ferro Fundido Nodular

Bruto ou Pintadas por Cataforese

Através de uma auditoria comprovou-se que as exigências da

norma ISO 50001:2011 foram satisfeltas.

Validade:

Este certificado é válido de 08.12.2018 a 20.08.2021.

30,12,2018

TOV Rheinland Cert GmbH Am Grauen Stein • 51105 Kötn

www.tuv.pt

Figura 2 - Certificado da Norma ISO 50001

Certificado

Norma de controlo

OHSAS 18001:2007

N° de reg. do certific.

2 03 08118

Titular do certificado:

SAKTHI Portugal, S.A. Rua Jorge Ferreirinha, 679

4470-314 Maia Portugal

Ambito:

Produção de Peças de Ferro Fundido Nodular Bruto ou Pintadas

por Cataforese.

Através de uma auditoria, relatório nº 2 03 08118 em 2018-06-22,

comprovou-se o cumprimento dos requisitos da norma.

Validade:

Este certificado é válido de 28.09.2018 a 31.03.2021.

11.12.2018

ISO/IEC 17021-1 Sazamas de Gestão TUV Rheintand Portugal, Lda. Rus Dr. Art * Lourens Borges, 9, 1 1495-131 Aloes

A validade deste certificado pode ser confirmada através da consulta do site www.certipedia.com

www.tuv.pt

Figura 3 - Certificado da Norma OHSAS 18001

Certificado

Norma de controle

IATF 16949:2016

(1.º Edição, 2016-18-07)

N° de reg. do certific. Certificado IATE Nº

01 111 88 107 0321921

Empresa:

SAKTHI Portugal, S.A. Rua Jorge Ferreirinha 679 4470-314 Maia · Portugal

Com extensão de local de produção

Sakthi Portugal SP21, S.A. Parque Empresarial do Casarão, Avenida das duas Rodas 1091 3750-869 Borratha · Portugal

Campo de aplicação:

Produção de Peças de Ferro Fundido Nodular Bruto ou Pintado por Cataforese

Exclusão do design do produto

Através de uma auditoria comprovou-se que as exigências da norma IATF 16949:2016 foram satisfeitas.

Data de início/ firm da validade: Este certificado é válido de 09.08.2018 a 08.08.2021.

Data de tomada de decisão:

15.08.2018

2-IAO-QMC 01003

www.tuv.com

Figura 4 - Certificado da Norma IATF 16949

Figura 5 - Certificado da Norma SA 8000

Certificado

Norma de controlo

NP 4427:2004

N° de reg. do certific.

7 10 01013

Titular do certificado:

SAKTHI Portugal, S.A. Rua Jorge Ferrelrinha, 679 P-4470-314 Mala

Âmbilo:

Produção de Peças de Ferro Fundido Nodular em Bruto ou Pintadas por Cataforese para a Indústria Automóvel.

Através de uma auditoria, relatório nº 7 10 01013 em 30 06.2016, comprovou-se o cumprimento dos requisitos da norma.

Validade:

Este certificado é válido de 08.08.2016 a 07.08.2019,

08.08.2016

Antono Siva Business Stream Manager Systems TÜV Streinland Pertugat, Lda. Rua Dr. Ant.* Loursive Borgers, 9, 3* 1495-131 Alg4e

A validade deste certificado pode ser confirmeda através da consulta do alte www.certipedia.com

www.tuv.com

L TÜVRheinland® Precisely Right.

Figura 6 - Certificado da Norma NP 4427

Certificado de Registo

Organização: SAKTH! Portugal, S.A.

Âmbito do Registo: Produção de peças de ferro fundido nodular ou pintadas

por cataforese

Morada: Rua Jorge Ferreirinha, 679

4470-314 Maia

N.º de Registo: PT-000069

Data de Registo: 26-10-2007

Data da 1.ª Renovação: 27-10-2010

Data da 2.º Renovação1: 07-12-2016

Validade do Certificado: 07-12-2019

A Agência Portuguesa do Ambiente, I.P. na qualidade de Organismo Competente segundo o Decreto-Lei n.º 95/2012, de 20 de abril, certifica que a organização acima indicada tem um sistema de gestão ambiental de acordo com o Regulamento (CE) n.º 1221/2009, de 25 de novembro, para promover a melhoria contínua do seu desempenho ambiental.

A organização publica uma Declaração Ambiental validada por um verificador acreditado, e está autorizada a utilizar o logótipo EMAS.

Amadora, 07 de dezembro de 2016

A Vogal do Conselho Diretivo da APA

Ana Teresa Perez

Figura 7 - Certificado do Registo EMAS

^{1 •} O registo esteve suspenso entre 10/07/2014 e 06/12/2016.

Quanto à renovação do registo EMAS (PT-000069) da Sakthi Portugal, S.A, foi aplicado o procedimento de Suspensão do registo, em 07-05-2014, devido à APA considerar que não se encontrarem reunidas as condições mínimas de atribuição de renovação do registo EMAS, nomeadamente no que se refere ao cumprimento da legislação ambiental em matéria de ruído vizinhança, constante no processo nº 120/REG/EMAS.

A Sakthi Portugal, realizou nova monitorização do Ruído com um novo Laboratorio Acreditado, para fazer face às questões levantadas pela APA relativas ao método utilizado para caracterização do Ruído de Fundo.

O novo relatorio de Ruído com Ref.ª: LABRV/00346/15 datado de Fevereiro de 2015 foi enviado à APA, em Março de 2015. Em oficio recebido em Setembro de 2015, a APA considerou não estarem ainda reunidas as condições para o levantamento da suspensão, mas tendo em conta os esforços desenvolvidos para a resolução do problema, a APA prolongou o prazo da Suspensão do registo EMAS até fim de Dezembro de 2015. Após informação da Sakthi dos investimentos realizados e das medições que se encontravam a decorrer, mas que devido às condições meteorológicas não favoráveis haveria um atraso no envio de relatório, a APA entendeu prolongar o prazo até fim de Janeiro de 2016.

O novo relatório de Ruído com refa LABRV/0121/16 datado de 28 de Janeiro de 2016, foi enviado à APA, que após análise, considerou estarem reunidas as condições para que a condicionante relativa à suspensão do registo EMAS fosse ultrapassada, conforme oficio no S015038-201603- DGA.DGQA - 14 de Marco 2016.

6. Principais Aspetos Ambientais

A identificação e avaliação dos aspetos ambientais são efetuadas para todas as atividades desenvolvidas pela Sakthi Portugal.

São identificados aspetos ambientais diretos (associados a atividade, produto e serviços da organização sobre os quais esta tem controlo e gestão direta) e indiretos (aqueles associados a atividades relacionadas com a empresa sobre os quais esta não pode ter controlo, podendo no entanto influenciá-los)

A identificação e avaliação dos aspetos ambientais é atualizada de forma permanente de modo a estar devidamente atualizada, como por exemplo: aquisição de novos equipamentos, implementação de novos processos da fábrica ou alteração dos existentes bem como alteração de requisitos legais. Anualmente é efetuada uma revisão geral e atualização.

Os aspetos Ambientais diretos são avaliados de acordo com critérios de análise objetivos e específicos que determinam:

- A Gravidade do Impacte Ambiental
- Contribuição do Aspeto para o Impacte Ambiental
- Condições de Controlo Ambiental

Com base nas tabelas Gravidade do Impacte Ambiental – Tabela 1, e Contribuição do Aspeto para Impacte Ambiental – Tabela 2, calcula-se o Risco Ambiental – Tabela 3.

Gravidade do Impacte Ambiental - Tabela 1

Categoria	Definição					
	Danos ambientais muito graves, irreversíveis ou efeitos provocados pare além das instaleções de própria organização devido a libertação de substâncias perigosas ou ruido incomodativo					
	Danos ambientais graves mas reversíveis, efetics limitados às instalações embora associados a um ousto elavado de reposição do equilibrio ambiental ou efetos provocados para além das instalações da própria organização elavido à libertação de substâncias não perigosas ou a utilização					
- 3	Danos ambientais pouco graves, com reposição fácil do equilitario ambiental.					
4	Danos sobre o emblente sem importância e desprezávea					

Contribuição do Aspecto para o Impacte Ambiental - Tabela 2

Categoria	Definição				
- 1	Contribuição muito importante.				
2	Contribuíção importante				
2	Contribuição moderada.				
4	Pequena contribuição.				
5	Contribuição regligenciável				

RISCO AMBIENTAL			Grav	dade	
	NO EDI-NE	•		3	4
		1	1	3	3
thurple	2	7	1	2	3
Corne		1	2	3	4
	4	2	3	3	4
	5	3	3	3	4

Com a análise do Risco Ambiental avaliam-se as condições de Controlo Ambiental – Tabela 4.

Descrição das Condições de Controlo Ambiental - Tabela 4

Categoria	Definição	
1	Não existem	
2	Existem mas são poucas ou tem graves deficiências	
3	Existem mas ainda não são suficientes ou tem algumas deficiências	
4	Existem, são suficientes e eficientes	

Conforme esse controlo obtém-se o grau de significância do Aspecto Ambiental em termos de Impacte Ambiental

Grau Significância - Tabela 5

GGME	SIGNIFICÂNCIA		Risco A	mbiental	
SIOITII	CARCM	1	2	3	4
e e	<u> </u>	1	1	3	5
rolo	2	1	2	4	5
ndip	3	2	3	5	5
8	4	3	4	5	5

É considerado Aspeto Ambiental Direto Significativo todo aquele que tiver grau de significância menor ou igual 3.

Quando é considerado Aspeto Ambiental Significativo, a empresa define um objetivo, meta com respetivo plano de monitorização.

Os aspetos Ambientais Indiretos são considerados Significativos conforme o grau de significância dos potenciais impactes avaliados:

- 1- Elevado se afeta ou pode afetar significativamente o Ambiente
- 2- Médio se afeta ou pode afetar moderadamente o Ambiente
- 3- Reduzido se afeta ou pode afetar minimamente o Ambiente

Os Aspetos Ambientais com impacte elevado (se afeta ou pode afetar significativamente o Ambiente) são considerados significativos, sendo feita uma definição de objetivos e metas com respetivo plano de monitorização.

6.1 Aspetos Ambientais Diretos Significativos

Em 2018 foi revisto a metodologia de identificação dos aspetos ambientais, introduzindo o conceito da perspetiva de Ciclo Vida (CV).

Identificaram-se 8 Fases Potenciais:

Fase 1 – Aquisição de Matérias-primas e Recursos; Fase 2 – Desenvolvimento Produto; Fase 3 – Produção; Fase 4 – Transporte Produto e Transporte Resíduos; Fase 5 – Montagem; Fase 6 - Distribuição; Fase 7 – Uso; Fase 8 – Fim de Vida.

Em 2019 foi feita a respetiva revisão.

Na tabela 6 apresenta-se os aspetos ambientais significativos diretos:

Ciclo Vida	Área/Atividade	Aspeto Ambiental Significativo	Condição Operação (Normal/Anormal/Emergência)	Grau Controlo	Impacte Ambiental	
Aquespio Aquespio Minister orimes	Fusão	Consumo Sucata	N	Controlo Operacional	Reciclagem Material	
		Consumo água Furos	N	Monotorização	Depleção Recursos Naturais	
	Fusão	Emissões por fontes fixas	N	Monotonzação	Poluição do ar Contaminação de solos e água por deposição	
		Emissões por fontes fixas (avaria sistema despoeiramento)	A.	Controlo Operacional	Potução do ar Contaminação de solos e água por deposição	
		Consumo água Furos	N	Monotorização	Depleção Recursos Naturais	
	Moldação	Emissões por fontes fixas	N .	Monotorização	Poluição do ar Contaminação de solos e águar por deposição	
	- Westernam	Emissões por fontes foæs (avana sistema despoeiramento)	A	Controlo Operacional	Polução do ar Contaminação de solos e águar por deposição	
		Consumo água Foros	N	Monotonzação	Depleção Recursos Naturais	
		Emissões por fontes tixas	N	Monotonzação	Polução do ar Contaminação de sotos e águas por deposição	
	Instalação Areias	Emissões por fontes fixas (avaita sistema despoeramento)	A	Controls Operacional	Polinção do as Contaminação de solos e água: por deposição	
	THE RESERVE OF THE PERSON NAMED IN	Consumo água Furus	N	Monotonzação	Depleção Recursos Naturais	
		Consumo Produtos Químicos	N	Monotonzação	Contaminação de solos e áqua-	
	Маспапа	Emissões por fontes fixas (lavador gases – Scrubber)	N	Monotonzação	Poluição do ar Contaminação de solos e água: por deposição	
		Emissões por fontes fixas (avana sistema Scrubber)	Λ	Controlo Operacional	Poluição do ar Contaminação de solos e águas	
	Granalhagem	Emissões por fontes fixas	N	Монотокігаçãо	Poluição do ar Contaminação de solos e água: por deposição	
		Emissões por fontes fixas (avana sistema despoeiramento)	A	Controlo Operacional	Poluição do ar Contaminação de solos e águas por deposição	
		Emissões por fontes fixas	N	Monotorização	Poluição do ar Contaminação de solos e águas por deposição	
	Acabamentos	Emissões por fontes fixas (avaria sistema despoeiramento)	A	Controlo Operacional	Poluição do ar Contaminação de solos e águas por deposição	
		Consumo Produtos Químicos	N	Monotorização	Contaminação bacteriológica cor danos para saúde pública	
		Consumo água	H	Monotorização	Depleção Recursos Naturais	
		Consumo Produtos Químicos Emissão Fontes Fixas	N	Monotorização	Contaminação de solos e águas	
	Tratamento Superficie		N -	Monotorização	Poluição do ar Contaminação de solos e águas por deposição	
		Emissão Fontes Fixas	^	Controlo Operacional	Poluição de ar Contaminação de solos e águas por deposição	
-	Manutenção	Consumo agua Furos	N	Monotorização	Depleção Recursos Naturais	
	Atividades Administrativas Cantina Posto Médico Laboratório	Consumo Produtos Químicos Consumo água Municipal	N.	Monotorização Monotorização	Contaminação de solos e águas Depleção Recursos Naturais	
	LEGUIDION	Consumo água Furos	E	Monotorização	Depleção Recursos Naturais	
	Rede Incêndios	Emissão aerossóis	A	Monotorização	Contaminação bacteriológica com	
		(Legionela)			danos para saúde pública	

Ciclo Vida	Ārea/Actividade	Aspecto Ambiental Significativo	Condição Operação (Normal/Anormal/Emergência)	Grau Controlo	Impacte Ambiental
	Edifícios, espaços verdes	Consumo água Furos	N	Monotorização	Depleção Recursos Naturais
Раме 3. Оренира	Instalações sanitárias e Balneários	Consumo água Municipal Emissão aerosoóis (Legionela)	N. A	Monotorização Monitorização	Dapleção Recursos Naturais Contaminação bacteriológica com danos para saúde pública
Pase 1 Aquaigin Returnos	Instalação Geral - Distribuição Energia	Consumo energia (electrica)	N.	Monotorszação	Depleção Recursos Naturais
48	Sistemas Refrigeração	Sistemas Refrigeração Émissão aeroseos (Legionela)		Monitorização	Contaminação bacteriológica com danos para saúde pública
og	Sakthi Portugal – Condições operação emergéncia	Incêndio	É	Controlo Operacional	Polução do ar Contaminação de solos e águas
Opera	Sakthi Pertugal - condepen opinicalio	Rosto amildo extense	N.	Monotonzação	Inconstitute

Tabela 6 - Aspetos Ambientais Diretos Significativos

Legenda: N - Normal

A - Anormal E- Emergência

6.2. Aspetos Ambientais Indiretos

Os aspetos indiretos identificados pela Sakthi Portugal, com a mesma perspetiva do conceito de Ciclo de Vida resultantes da reavaliação efetuada em Março de 2019, encontram-se descritos na tabela 7.

Ciclo Vida		Área/Actividade	Aspecto Ambiental Significativo	Condições Operação (Normal/Anormal/Emergência)	Grau Controlo	Impacte Ambiental	
2		Сопсерсãо е	Consumo aubstâncias perigosas			Poluição do ar	
	Н	Desenvolvimento produto	Consumo Energia	Normal	Programa de Gestão 2019	Contaminação solos e água por deposição	
Produko			Produção Residuos			Depleção Recursos Naturais Contaminação de solos e águas por deposição	
ASE2-	Produto	Embalagem – aquisição embalagem de madeira, cartão	Utilização aubstâncias perigosas	Normal	Programa Gestão 2019	Poluição do ar Contaminação de solos e águas por deposição	
	2		Uso Recursos escassos (Madeira/cartão)			Depleção Recursos Naturais	
Fim de Vida	Fim de Vida Produto	Reciclagem produto 100%	Normat	Programa Gestão 2019	Poluição Ar		
	N		Produção de emissões gasosses atmes	Normal	Monotoresção	Polocial do a	
	NOS	Manutanção Engilizadores	Produção Residuos Pengosos	Normal	Programa Gestilo	Contiminação de ativis e águas por depoução.	
	28		Consumo ecóstáncias pengosin	Copiesae Cop	2019	Displação Renamos Naturais	
		Manutenção Subcontrataria	Produção Rusdo Produção Residues	Normal	Programa Gestilo	Rivido Mizinhança incompolidade Contaminação de solos e aguns por deposição	
			Consumo substâncias perigonas. Produção Ruado		2019	Depleção Récursos Naturalis Ruido Vizintança Inconstidade	

	1	Área/Actividade	Aspecto Ambiental Significativo	Condições Operação (Normal/Anormal/Emergência)	Grau Controlo	Impacte Ambiental
			Produção de Emisabes Gasosas	And the state of		Poloção do ar
		Transporte e Destino Futal Residues	Produção Ruido	Normal	Programs Gestilo 2019	Incomptitude
			Consumo substâncias pergosas			Depleção Récursos Naturais
	103		Produção de Emisiões Gasosas			Policytio do ar
	Sucre		Produção Ruido:			Incomodistate
		Construção Cost	Produção Polumen água	Normal	Programa (Statilio	Contaminação de solos e aguas po deposição
			Communic substancias persposas		2019	Polizção do ar Continuenção de solos a aguas po
	П		Produção Rasiduos			Contamosção de solos e águas po deposição
			Chip de Recursos de assos Perturbadores do Ecossistenta (Biodiversidado)			Depleção Récursos Naturais
	in the		Produção Residuos		Programa Gestão 2019	Contaminação de solos e águas po deposição
	M.S. Secret	Fornecimento Materias primas óleos e Produtos Químicos	Produção substânceis perigosas	Normal		Poluição do ar Contaminação de solos e águas po deposição
I	Į.	S Cattimican	Produção Ruído			Incomodidade
IASE 3 - Operations	is Marie	Subcontrata; To	Produção Emissões Gasosas			Polução do ar
¥	Aprice	Fintura Maquinageni e Machana	Produção de águas Residuais		Programa Gestão 2019	Contaminação de solos e águas por deposição
			Produção Residuos	Normal		Contaminação de solos e aguas por depasição
		Subcontratação Pintura e Maquinagem	Consumo produtos químicos		Programa Gestão 2019	Depleção Recursos Naturais Contaminação de solos e águas Poluição Ar
		e Macharia	Pindução Ruido Consumo Substancias perigosas			Ruido - incomodidade Depleção Recursos Naturais

Tabela 7 - Aspetos Ambientais Indiretos Significativos

7. Objetivos e Programas Ambientais

7.1. Ano de 2018

O programa Ambiental em vigor durante o ano de 2018 está apresentado na tabela 8.

Aspetos ambientais	Objetivo	Indicador	Meta	Acão a Realizar	Prazo	Conclusão
Emissões Difusas	Redução poluição atmosférica	Emissão CO e partículas	Emissão média <0.2 Kg/ton* *Reajuste da meta para o valor do Bref	Encaminhamento dos gases de escape dos fornos de fusão e holdings para a chaminé de exaustão dos fornos.	Dez	Concluído Melhoria na área da fusão Holding ASEA 2 – (Ver resultados de monitorização – tabela 14 da pag.57)
Emissões por fontes fixas	Manter o nível da poluição atmosférica	VEA mg/Nm3	<=20mg/Nm 3	Continuação do trabalho de auditoria e melhoria no sistema aspiração considerando as melhores práticas disponíveis no mercado	Dez	Trabalho realizado sendo demonstrado com os valores de monitorização (ver resultados no ponto 8.1 — Emissões gasosas)
Ruído	Redução ruído emitido	LDen, Zona Mista	Redução 2/3 dB	Incorporação de silenciadores nas fontes FF12 e FF14. Caracterização do ruído para avaliação do alcance das metas	Adiado investimento para 2020	Transita para 2020 por questões relacionadas com investimento — Projeto suspenso em 2019
Consumo água	Manter consumo água	Manter o consumo especifico por Ton Fe Fundido	1.38 m³/ton	Monitorização do sistema de controlo de água	Dez	Melhoria sistema de captação e gestão das águas. (Substituição tubagem e alocação de contadores sectoriais. Ver resultados obtidos na tabela 27 da pag.81)
Consumo Energia	Redução consumo específico	Kgep/ton	357 Kgep/ton	Identificação e monitorização dos consumidores significativos de energia para o gás natural. Reposição dos empilhadores de gás natural por elétricos	Dez	Substituição empilhadores no Armazém de Produto Acabado por elétricos. Continuação em 2019 para restantes áreas. Rendimento de placa ainda em curso com o projeto 70/30 (ver resultados obtidos na pag.70 Rendimento placa molde")

Aspetos ambientais	Objetivo	Indicador	Meta	Acão a Realizar	Prazo	Conclusão
Produção Residuos (Aspeto Indireto)	Prevenção poluição	% Fornecedore s certificados em termos ambientais	Aumentar a taxa de fornecedores certificados para 65%	Continuação da realização de pressão junto dos fornecedores, para obtenção da certificação Ambiental e/ou solicitar planeamento com vista à sua certificação	Dez	59% Dos fornecedores certificados ISO14001
				Realização simulacros – Preparação Plano Trienal, para assegurar a sua realização.	Jan	Cumprimento do plano de simulacros
Incêndio	Ausência de incêndios in	Nº incêndios	Nenhum	Realização Diagnósticos de Segurança	Dez	Cumprimento do plano de diagnósticos seguranças
				Auditoria para assegurar a continuação da certificação OHSAS 18001	Março	Atingido – Realizada renovação em Junho 2018
Consumo Matérias- primas	Redução consumo destes produtos químicos associados pintura/TS	Consumo específico	Eliminação das Matérias- primas Perigosas (MPP) associadas à Pintura Machos	Aquisição e implementação do sistema de secagem para a macharia	Dez	Projeto adiado para 2020, devido a questões orçamentais

Tabela 8 - Programa Ambiental Proposto para 2018

O programa ambiental de 2018 foi cumprido quase na íntegra

7.2. Ano de 2019

Para o ano de 2019 foram definidos os seguintes objetivos e programas ambientais, tendo em linha de conta a revisão anual dos aspetos significativos da Sakthi Portugal.

Aspetos ambientais	Objetivo	Indicador	Meta	Acão a Realizar	Prazo
Emissões Difusas	Redução poluição atmosférica	Emissão CO e partículas	Emissão média <0.2 Kg/Ton	Encaminhamento dos gases de escape dos fornos de fusão e holdings para a chaminé de exaustão dos fornos.	Dez
Emissões por fontes fixas	Manter o nível da poluição atmosférica	VEA mg/Nm3	<=20mg/Nm 3	Continuação do trabalho de auditoria e melhoria no sistema aspiração considerando as melhores práticas disponíveis no mercado	Dez
Consumo água	Manter consumo água	Manter o consumo especifico por Ton Fe Fundido	1.38 m³/ton	Monitorização do sistema de controlo de água (Concluir a implementação dos contadores sectoriais e monitorização "on-line")	Dez
Consumo Energia	Redução consumo específico	Kgep/ton	354 Kgep/ton	Identificação e monitorização dos consumidores significativos de energia para o gás natural. Reposição dos empilhadores de gás natural por elétricos. Aumento rendimento de fábrica através do aumento de rendimento de placa – projeto 70/30	Dez
Produção Resíduos (Aspeto Indireto)	Prevenção poluição	% Fornecedore s certificados em termos ambientais	Aumentar a taxa de fornecedores certificados para 65%	Continuação da realização de pressão junto dos fornecedores, para obtenção da certificação Ambiental e/ou solicitar planeamento com vista à sua certificação	Dez
				Realização simulacros – Preparação Plano Trienal, para assegurar a sua realização.	Jan
Incêndio	Ausência de incêndios	Nº incêndios	Nenhum	Realização Diagnósticos de Segurança	Dez
				Auditoria para assegurar a transição da certificação OHSAS 18001 para a ISO 45001	Set

Tabela 9 - Objetivos e Programas Ambientais 2019

7.3. Cronograma de desempenho ambiental por forma a adotar as MTD do BREF sectorial

			PDA p	roposto pa	ara 20	18	
			Jan-Abr	Mai-Ago	Set	-Dez	
	Cumprimento do VEA do	Realização de monitorização deste parâmetro					Ação implementada, tendo-se constatado o cumprimento do Valor de Emissão Associado nas duas monitorizações conforme análise descrita nas pag.49 e 57 desta declaração
S	Parâmetro partículas	Averiguação de necessidade de tomada de medidas					Não houve necessidade de medidas adicionais
Gasos	Cumprimento do VEA do parâmetro de Aminas	Realização de monitorização deste parâmetro					Foi realizado e verificou-se o cumprimento do Valor de Emissão Associado nas duas monitorizações
ılssões	parâmetro de Aminas	Averiguação de necessidade de tomada de medidas					Não houve necessidade de medidas adicionais
5	Cumprimento do VEA do	Realização de monitorização deste parâmetro					Foi realizado e verificou-se o cumprimento do Valor de Emissão Associado
	parâmetro PCDD/PCDF	Averiguação de necessidade de tomada de medidas					Face ao facto dos valores obtidos nas monitorizações efetuadas serem muito inferiores ao Valor de Emissão associado não houve necessidade de tomar medidas
	Cumprimento do rácio de	Monitorização da emissão de partículas nas chaminés associadas aos fornos de Fusão durante um carregamento					Foi efetuada a monitorização da emissão de partículas associadas aos fornos de fusão, tendo sido efetuada a monitorização duas vezes durante o ano de 2018 conforme plano de monitorização previsto para as chaminés FF5 e FF14 associadas aos fornos de fusão e foi efetuada a monitorização das emissões difusas no espaço envolvente aos fornos de fusão (pontos onde poderá existir
Fusão	emissão de 0,2 Kg part/Ton ferro	Contabilização dos carregamentos dos fornos					emissões difusas) após a quantificação dos caudais mássicos de partículas, determinou-se o caudal mássico anual (face ao numero de horas de funcionamento dos fornos) e fez-se a divisão pela
Fornos de F		Medição das emissões difusas no espaço interior					quantidade de ferro fundido. O rácio de emissão de partículas por quantidade de ferro fundido é inferior ao valor do BREF de acordo com o documentado no relatório de desempenho Ambiental de Abril 2018
For	Redução das emissões	Confinamento das linhas de moldação					Em 2020 será efetuado o confinamento da zona de vazamento para
	difusas de partículas	Confinamento do vazamento do fundido para a linha de moldação					as linhas de moldação
Moldação e prep. de areias	Redução das emissões de	Estudo para redução dos consumos de ligantes e resinas na preparação de areia ligada quimicamente					Continuam a decorrer os estudos com o fornecedor de matérias- primas no sentido de otimização do tipo de matérias-primas a
Molda prep. de	COV	Estudo de melhoria no processo de preparação de areias (ex. temperaturas e cargas)					serem utilizadas. O sistema de células de cargas para preparação das resinas para a macharia implementado tem demonstrado ser vantajoso para otimização dos consumos de matérias-primas

Tabela 10 - Cronograma de desempenho ambiental por forma a adotar as MTD do BREF sectorial

8. Comportamento Ambiental em 2018

Durante o ano de 2018 e empresa teve uma laboração normal, praticamente constante ao longo de todos os meses do ano. A baixa produção dos meses de Agosto e Dezembro relaciona-se com o período de férias.

Durante o ano 2018 não houve registo de situações de emergência

Quanto à ocorrência do ano 2017 relacionada com a Legionella, em 2018 mantevese o sistema de monitorização e controlo mais apertado e constante. Resultados esses de Legionella pneumophila negativo.

Durante o ano de 2018 não foram apresentadas reclamações junto da Sakthi Portugal.

8.1. Emissões Gasosas

Existem nas instalações 14 fontes de emissão pontual e 2 chaminés inativas.

Todas as fontes de emissão pontual para a atmosfera estão equipadas com filtros de manga para redução do teor de partículas nos efluentes gasosos à exceção da fonte FF3 (Macharia) que possui lavador de gases destinado à remoção da amina presente nos efluentes, e as FF16, FF17 e FF18 associados ao Tratamento de Superfície.

O controlo da emissão de gases é efetuado de acordo com o especificado na tabela 11 foram definidas novas frequências de monitorização na LA 309/0.1/2014 A caracterização das emissões gasosas é feita por um Laboratório acreditado pelo IPAC (L0294) e de acordo com a legislação aplicável em vigor.

				2016		20	17	20	018	2019
Fonte	Equipamento	Parâmetros	Frequência	1°	20	10	2°	10	20	10
				Ensaio	Ensaio	Ensaio	Ensaio	Ensaio	Ensaio	Ensaio
		Partículas		Maio	Novembro	Maio	Outubro	Junho	Dezembro	Abril
		Metais I		Maio	Novembro	Setembro	Outubro	Junho	Dezembro	Abril
	Torre areias	Metais II		Maio	Novembro	Setembro	Outubro	Junho	Dezembro	Abril
FF1	GF + Linha	Metais III	2 x ano	Maio	Novembro	Setembro	Outubro	Junho	Dezembro	Abril
	Moldação GF	COV		Malo	Novembro	Maio	Outubro	Junho	Dezembro	Abril
	The second	NOx		Maio	Novembro	Maio	Outubro	Junho	Dezembro	Abril
		COVNM		Maio	Novembro	Maio	Outubro	Junho	Dezembro	Abril
		Partículas		Maio	Dezembro	a)	Outubro	Junho	Dezembro	Abril
FF2	Acabamentos	Metais I	1 x 3	Maio	Dezembro	Julho	Outubro	Junho	Dezembro	Abril
112	Fundição	Metais II	anos	Maio	Dezembro	Julho	Outubro	Junho	Dezembro	Abril
		Metals III		Maio	Dezembro	Julho	Outubro	Junho	Dezembro	Abril
		Partículas		Maio	Dezembro	Julho	Outubro	Junho	Novembro	Abril
FF3	Macharia	Aminas	2 x ano	Maio	Dezembro	Maio	Outubro	Junho	Dezembro	Abril
		COVNM		Maio	Dezembro	Maio	Outubro	Agosto	Dezembro	Abril
		Partículas	3	Maio	Novembro	Maio	Outubro	Junho	Dezembro	Abril
		PCDD/PCDF	2 x ano	Maio	Novembro	Maio	Outubro	Junho	Novembro	Abril
		Metais I		Maio	Novembro	Maio	Outubro	Junho	Dezembro	Abril
FF5	Fornos de Fusão	Metais II	[Maio	Novembro	Maio	Outubro	Junho	Dezembro	Abril
	I usu	Metals III	1 x 3 anos	Maio	Novembro	Maio	Outubro	Junho	Dezembro	Abril
		NOx		Maio	Novembro	Maio	Outubro	Junho	Dezembro	Abril
		COVNM		a)	a)	a)	a)	Junho	Dezembro	Abril
		Partículas	2 x ano	Maio	Novembro	Maio	Outubro	Junho	Novembro	Abril
		Metais I		Maio	Novembro	Maio	Outubro	Junho	Novembro	Abril
	-1	Metais II		Maio	Novembro	Maio	Outubro	Junho	Novembro	Abril
FF7	Torre areias Space	Metais III	1 x 3	Maio	Novembro	Maio	Outubro	Junho	Novembro	Abril
4	Opace	COV	anos	Maio	Novembro	a)	Outubro	Junho	Novembro	Abril
		NOx		Malo	Novembro	a)	Outubro	Junho	Novembro	Abril
		COVNM		Maio	Novembro	a)	Outubro	Junho	Novembro	Abril
		Partículas		a)	a)	a)	a)	Junho	Novembro	Abril
FF8	Acabamentos	Metais I	1 x 3	a)	a)	a)	a)	Agosto	Dezembro	Abril
rro	Acabamentos	Metais II	anos	a)	a)	a)	a)	Junho	Novembro	Abril
		Metais III		a)	a)	a)	a)	Junho	Novembro	Abril

Font	Equipament	16 23		2	016	2	017	2	018	2019
е	o	Parâmetros	Frequência		2º	10	20	10	20	10
		Partículas		Ensaio b)	Ensaio	Ensaio	Ensaio	Ensaio	Ensaio	Ensaio
100	TION THE RES	Metais I		b)	b)	b)	b)	b)	b)	b)
FF9	Acabamentos	Metals II	1 x 3 anos	b)	b)			b)	b)	b)
- 11	Marine P.	Metais III				b)	b)	b)	b)	b)
		Partículas	2 4 000	b)	b)	b)	b)	b)	b)	b)
		Metals I	2 x ano	Malo	Dezembro	Maio	Outubro	Junho	Dezembro	Maio
FF10	Linhas Moldação	Metais II		Malo	Dezembro	Maio	Outubro	Junho	Dezembro	Abril
1110	DISA	Metais III	1 x 3 anos	Maio	Dezembro	Maio	Outubro	Junho	Dezembro	Abril
		COVNM		Maio	Dezembro	Maio	Outubro	Junho	Dezembro	Abril
		Partículas	2 v 200	a)	a)	a)	a)	Junho	Dezembro	Abril
	A CONTRACTOR		2 x ano	Maio	Novembro	Maio	Outubro	Junho	Novembro	Abril
FF11	Torre Areias	Metals I		Maio	Novembro	Maio	Outubro	Junho	Novembro	Abril
PPILIT	Space	Metals II	1 x 3 anos	Maio	Novembro	Maio	Outubro	Junho	Novembro	Abril
		Metais III	dilos	Maio	Novembro	Malo	Outubro	Junho	Novembro	Abril
		COVNM		3)	3)	a)	a)	Junho	Novembro	Abril
		Partículas		Malo	Novembro	Maio	Outubro	Junho	Novembro	Abril
FF12	Granalhagem	Metais I	2 x ano	Maio	Novembro	Malo	Outubro	Agosto	Dezembro	Abril
		Metais II		Maio	Novembro	Malo	Outubro	Junho	Novembro	Abril
		Metais III		Maio	Novembro	Maio	Outubro	Junho	Novembro	Abril
1000	A MARKET MAIN	Partículas		Malo	Dezembro	Maio	Outubro	Outubro	Dezembro	Abril
		Metals I		Maio	Dezembro	Maio	Outubro	Agosto	Novembro	Abril
-	Linhas	Metals II		Maio	Dezembro	Maio	Outubro	Junho	Novembro	Abril
FF13	Moldação Disas	Metais III	2 x ano	Maio	Dezembro	Maio	Outubro	Junho	Novembro	Abril
150	Disas	COV		Maio	Dezembro	Maio	Outubro	Junho	Novembro	Abril
		NOx	ļ	Malo	Dezembro	Maio	Outubro	Junho	Novembro	Abril
		COVNM		Maio	Dezembro	Maio	Outubro	Junho	Novembro	Abril
		Partículas	-	Maio	Novembro	Maio	Outubro	Junho	Dezembro	Abril
- 1		Metais I	-	Maio	Novembro	Maio	Outubro	Junho	Dezembro	Maio
-	Fornos de	Metais II		Malo	Novembro	Maio	Outubro	Junho	Dezembro	Maio
FF14	Fusão	Metais III	2 x ano	Malo	Novembro	Maio	Outubro	Setembro	Dezembro	Maio
		COVNM		Maio	Novembro	Maio	Outubro	Junho	Dezembro	Abril
		NOx		Maio	Novembro	Maio	Outubro	Junho	Dezembro	Abril
		PCDD/PCDF		Maio	Novembro	Maio	Outubro	Junho	Novembro	Abril
		Partículas		Maio	Novembro	Maio	Outubro	Junho	Novembro	Abril
	Forme do	COV	_	Malo	Novembro	Julho	Outubro	Junho	Novembro	Abril
FF16	Forno de Polimerizaçã	COVNM	2 x ano	Maio	Novembro	Julho	Outubro	Junho	Novembro	Abril
	0	со	- X GIII	Maio	Novembro	Julho	Outubro	Junho	Novembro	Abril
		SO ₂		Maio	Novembro	Maio	Outubro	Junho	Novembro	Abril
		NOx		Malo	Novembro	Maio	Outubro	Junho	Novembro	Abril
		Partículas		Julho	Novembro	Maio	Outubro	Agosto	Novembro	Abril
	Exaustão do	COV		Julho	Novembro	Maio	Outubro	Junho	Novembro	Abril
FF17	Túnel de	COVNM	2 x ano	Julho	Novembro	Maio	Outubro	Junho	Novembro	Abril
	Preparação	Zn		Julho	Novembro	Maio	Outubro	Junho	Novembro	Abril
		Ni		Julho	Novembro	Maio	Outubro	Junho	Novembro	Abril
		Partículas		Junho	Novembro	Maio	Outubro	Junho	Dezembro	Abril
		SO2		Junho	Novembro	Maio	Outubro	Junho	Dezembro	Abril
FF18	Queimadores	NOx	2 x ano	Junho	Novembro	Julho	Outubro	Junho	Dezembro	Abril
	do Túnel	cov	- ^ 4110	Junho	Novembro	Julho	Outubro	Junho	Dezembro	Abril
		COVNM		Junho	Novembro	Julho	Outubro	Junho	Dezembro	Abril
		со		Junho	Novembro	Maio	Outubro	Junho	Dezembro	Abril

Tabela 11 - Cronograma para a medição das emissões gasosas

- a) De acordo com o estabelecido pela Licença Ambiental, LA nº 309/0.1/2014 a frequência de Monitorização é trianual
- b) Fonte INACTIVA desde 23-06-2014

Na tabela 12 apresentam-se os resultados dos caudais mássicos obtidos para as aspirações associados às Fontes fixas de emissão existentes na Sakthi Portugal:

			Caudal Mássico (kg/h)							
Fonte	Equipament	Parâmetros	20	16	2	017	2	018	2019	Limiares
	.0		1º Ensaio	2º Ensaio	1º Ensaio	2º Ensaio	1º Ensaio	2º Ensaio	1ºEnsaio	Mássicos
		Partículas	1,2	0,28	0,91	1,250	1,489	0,430	0,307	0,5-5
	Torre	Metais I	<0,015 a)	0,004 a)	0,0027 a)	0,0040 a)	0,005 a)	<0,0033 a)		0,001
	areias GF	Metais II	<0.0022	<0,01 a)	0,0082 a)	0,0120 a)	0,016 a)	0,0072 a)	0,0110 a)	0,005
FF1	+ Linha	Metais III	<0,0022	<0,027 a)	0,0438 a)	0,0260 a)	0,042 a)	0,0171	0,1065 a)	0,025
	Moldação	COV	1,6	1,98	1,61	2,162	3,446	5,581	1,125	2-30
	GF	NOx	<3,2	2,5	<2,065	<3,76	<2,764	<2,362	<1,915	2-30
		COVNM	0,86	1,77	0,98	1,712	2,781	5,292	0,948	1,5-25
		Partículas	b)	b)	b)	b)	0,275	0,341	0,052	0,5-5
2000	Acabament	Metais I	<0,00085	<0,002 a)	0,0009	b)	0,0015 a)	0,0013 a)	0,0008	0,001
FF2	os Fundição		<0,00086	<0,006 a)	0,0027	b)	0,0045	0,0039	0,0027	0,005
		Metais III	<0,0036	<0,01	0,0120	0,0070	0,0115	0,0086	0,0074	0,025
		Partículas	<0,027	0,044	0,14	0,042	0,330	<0,042	0,1	0,5-5
FF3	Macharia	Aminas	<0,027	<0,001	<0,00160	<0,003	<0,001	<0,042	<0,02	0,5-5
1113	Placifalia	COVNM	0,074	0,412	0,93	0,883	2,59			1 5-25
-						The state of the s		0,868	2,2	1,5-25
		Partículas	0,21	0,09	0,12	0,044	0,305	0,176	0,152	0,5-5
		PCDD/PCDF	0,486	0,73	0,300	0,59	0,114	0,196	<0,308	- d)
gar planter	Fornos	Metals I	<0,0016 a)	<0,005 a)	<0,0017 a)	0,0009	0,007 a)	0,0032 a)	0,0023 a)	0,001
FF5	Fusão	Metais II	<0,0012	0,014 a)	<0,0053 a)	0,0026	0,024 a)	0,0094 a)	0,0071 a)	0,005
		Metais III	<0,014	0,033 a)	0,0312	0,0084	0,118 a)	0,0259 a)	0,0233	0,025
	To be the little of the	NOx	<2	<2	<1,24	<0,36	<2,091	<1,877	<1,609	2-30
		COVNM	b)	b)	b)	b)	2,275	5,822	<0,575	1,5-25
		Partículas	0,63	0,2	0,85	0,319	0,324	0,167	0,197	0,5-5
		Metais I	<0,0012 g)	<0,003 g)	<0,0120 a)	0,0021 a)	<0,0029 a)	0,0021 a)	<0,0019 a)	0,001
150	Torre de	Metais II	<0,0012	0,009 g)	<0,0130 a)	0,0063 a)	<0,0088 a)	0,0061 a)	<0,0062 a)	0,005
FF7	areias	Metals III	<0,0092	0,02	0,0370	0,0350 a)	0,0320 a)	0,0227	0,0188	0,025
	Space	COV	b)	b)	b)	b)	1,070	0,353	<0,308	2-30
		NOx	d)	b)	b)	b)	<1,706	<1,338	<1,078	2-30
	The Later State of	COVNM	0,25	0,291	b)	b)	0,878	<0,353	<0,308	1,5-25
	VERT COLUMN	Partículas	b)	b)	b)	b)	0,030	0,026	0,019	0,5-5
FF8	Acabamento	Metais I	b)	b)	b)	b)	0,0005	0,00030	<0,0003	0,001
FFO	s	Metais II	b)	b)	b)	b)	<0,00133	0,00103	<0,0011	0,005
		Metals III	b)	b)	b)	b)	0,0028	<0,00241	0,0027	0,025
		Partículas	c)	c)	c)	c)	c)	c)	c)	0,5-5
FF9	Acabamento	Metals I	c)	c)	c)	c)	c)	c)	c)	0,001
LLA	s	Metais II	C)	c).	e)	c)	c)	c)	c)	0,005
		Metais III	c)	c)	c)	c)	c)	c)	c)	0,025
		Partículas	1,1	1,363	0,47	0,533	0,512	0,496	0,446	0,5-5
	Linhas	Metais I	<0,0018 a)	0,004 a)	0,0060 a)	0,0019 a)	0,0034 a)	0,0019 a)	<0,0027 a)	0,001
FF10	Moldação	Metais II	<0,0016	<0,01 a)	0,0100 a)	0.0027	0,0103 a)	<0,0045	<0,0077 a)	0,005
110000	Disa	Metais III	<0,015	0,02	0,0210	0,0173	0,0210	0,0089	0,0509 a)	0,025
		COVNM	b)	b)	b)	b)	1,472	<0,781	0,772	1,5-25
		Partículas	0,31	0,039	0,562	0,054	0,200	0,591	0,062	0,5-5
	Torre de	Metals I	<0,00078	0,002 a)	0,0039 a)	0,0013 a)	0,0038 a)	0,0018 a)	0,0014 a)	0,001
FF11	areias	Metais II	<0,00084	0,006 a)	0,0077 a)	0,0038	<0,01 a)	0,0054	0,0041	0,005
	Space	Metais III	<0,009	0,015	0,0340 a)	0,0138	0,0597	0,0158	0,0111	0,025
	- Date	COVNM	b)	b)	b)	b)	2,118	<0,329	0,372	1,5-25
		Partículas	0,1	0,18	0,562	0,198	0,059	0,04	0,203	0,5-5
	Granalhage	Metais I	<0,0066 a)	0,0022 a)	0,0030 a)	0,0019 a)	0,0025 a)	<0,0021 a)	0,0017 a)	0,001
FF12	m	Metais II	<0,0008	0,005	<0,0070 a)	0,0019 a)	0,0023 4)	0,0052	0,0017 a)	0,005
		Metais III	<0,000	0,003	0,0204	0,0030 a)	0,0031	0,0032	0,0126	0,005
		Partículas	1,1	1,442	1,27	0,656	0,667	0,0114	0,0126	0,023
		Metais I	<0,0082 a)	<0,004 a)	<0,0050 a)					
	Linhas de	Metals II	<0,0082 a)	<0,004 a)	<0,0050 a)	0,0050 a)	0,0106 a)	0,0035 a)	<0,0036 a)	0,001
FF13	Moldação	Metals III				0,0160 a)	0,016 a)	0,0086 a)	<0,0108 a)	0,005
FF13			<0,028 g)	0,053 a)	0,0270 a)	0,0580 a)	0,054 a)	0,0463 a)	0,0755 a)	0,025
	Disas	COV	1,8	2,539	2,17	2,08	1,421	<1,020	0,637	2-30
		NOx	<3	<3	<1,94	<4,26	<3,068	<1,646	<2,615	2-30
		COVNM	0,59	2,4	1,67	1,747	1,154	<1,020	<0,637	1,5-25

Tabela 12 - Caudais Mássicos (Cont. Pág. Seg.)

	Equipament o				Cau	dal Mássico (kg/h)			Limiares
Fonte		Parâmetros	20	16	-20	17	20	18	2019	Mássicos
			1º Ensaio	2º Ensaio	1º Ensaio	2º Ensaio	1º Ensaio	2º Ensaio	1º Ensaio	
	1	Partículas	0,37	0,295	1,05	0,129	0,761	0,405	0,182	0,5-5
	1 - 1 - 1	Metais I	<0,0063 a)	<0,006 a)	0,0100 a)	0,0050 a)	0,009 a)	0,0033 a)	0,0062 a)	0,001
	Formes de	Metais II	<0,0035	<0,02 g)	0,0310 a)	0,0100 a)	0,019 a)	0,0099 a)	0,015 a)	0,005
FF14	Fornos de Fusão	Metais III	<0,018	0,046 g)	0,1160 a)	0,0250	0,041 a)	0,0248	0,029 a)	0,025
	1 usau	COVNM	0,46	0,492	1,85	1,003	5,015	1,385	1,026	2-30
		NOx	<3,6	<4	<4,55	<2,81	<4,612	<1,631	<2,069	2-30
	The second of	PCDD/PCDF	<0,609	1,22	0,771	<0,21	<0,152	0,251	0,482	- d)
H		Partículas	0,024	0,014	0,018	0,009	0,031	<0,008	0,031	0,5-5
		COV	<0,078	0,011	0,120	0,012	0,04	<0,013	0,019	2-30
FF16	Forno de	COVNM	0,0065	0,009	0,112	0,010	0,034	<0,013	<0,019	1,5-25
LLTO	Polimerização	CO	0,099	0,083	<0,031	0,060	0,105	<0,044	0,104	5-100
		SO₂	<0,18	0,018	0,036	0,232	0,026	0,009	0,008	2-50
		NOx	<0,13	<0,1	<0,07	<0,072	<0,086	<0,078	<0,086	2-30
	- (a) (b) (c) (c)	Partículas	0,015	0,005	0,035	0,0039	0,031	0,016	0,033	0,5-5
	Exaustão	COV	0,027	<0,02	0,059	0,020	0,047	0,018	<0,033	2-30
FF17	do Túnel de	COVNM	0,023	<0,01	0,050	0,019	<0,047	<0,018	<0,033	1,5-25
	Preparação	Zn	0,000055	0,0002	0,00065	0,000361	0,00134	0,000387	0,00076	0,025
	10 16 524	Ni	0,000028	0,0001	0,00009	0,000044	0,00030	<0,00009	0,00013	0,005
		Partículas	0,035	0,003	0,077	0,011	0,024	0,024	0,012	0,5-5
		SO2	<0,12	0,001	0,060	0,033	0,011	0,004	0,0054	2-50
FF18	Queimadores	NOx	<0,086	0,081	<0,076	<0,043	<0,077	0,397	0,279	2-30
LLIQ	do Túnei	COV	0,34	0,009	0,031	0,005	0,014	0,014	0,013	2-30
	1 2 2 2 2	COVNM	0,024	0,008	0,028	0,004	<0,014	<0,014	<0,013	0,05-1
	-1-1	co	0,24	0,165	0,152	<0,017	<0,041	<0,048	<0,041	5-100

Tabela 12 - Caudais Mássicos

- a) Valores de Metais I, II ou III que ultrapassam o limiar Mássico Mínimo
- b) De acordo com o estabelecido pela Licença Ambiental, LA nº 309/0.1/2014 a frequência de Monitorização é trianual, nova medição em 2018
- c) Fonte INACTIVA desde 23-06-2014
- d) Valores apresentados em µg I-TEC/h

Conforme análise da Tabela 12, verifica-se que todas as fontes fixas de emissão têm para os parâmetros Nox, Partículas, COV, COVNM, SO₂ e CO valores de caudais mássicos inferiores aos limiares mássicos máximos, o que se traduz em impacto positivo nos termos da poluição atmosférica.

Relativamente ao parâmetro metais pesados verifica-se que o limiar mássico mínimo é ultrapassado. Face ao exposto e dando cumprimento ao estipulado na LA a Sakthi altera a frequência da sua monitorização para semestral, não obstante a Sakthi continuar a procurar junto dos seus fornecedores sucata de produtos com menor teor destes elementos no sentido de melhorar os resultados por forma a permitir alterar a frequência de monitorização para a legalmente estabelecida.

A fonte de emissão fixa associada aos acabamentos FF8 é a única com emissão de metais pesados que tem valores de caudais mássicos inferiores ao limiar mássico mínimo e no âmbito da LA ficou com monitorização de três em três anos.

A seguir apresentam-se as concentrações de poluentes obtidas nos anos de 2016, 2017 e 2018 após tratamento em filtro de mangas, Tabela 13.

					Concer	ntração (mg/	Nm3)			
Fonte	Equipamento	Parâmetros	20	16	20	17	20:	18	2019	VLE
			1º Ensaio	2º Ensaio	1º Ensaio	2º Ensaio	1º Ensaio	2º Ensaio	1º Ensaio	
		Partículas	13,3	3,0	11	14	18,5	4,5	3,6	20
	2 S S S S S S S S S S S S S S S S S S S	Metais I	<0,162	0,05	0,033	0,046	0,065	<0,0401	0,043	0,2
	Torre areias	Metais II	<0,024	<0,1	0,099	0,138	0,196	0,088	0,132	1
FF1	GF + Linha	Metais III	<0,242	0,3	0,529	0,296	0,509	0,209	1,275	5
	Moldação GF	COV	17	23	19,6	24	42,8	59,0	13,0	200
		NOx	<35	<29	<25,1	<42,2	<34,3	<25,0	<22,2	500
		COVNM	9	21	11,9	19,2	34,5	55,9	11,0	110
		Partículas	a)	a)	a)	a)	10,4	18,1	2,9	20
FF2	Acabamentos	Metais I	<0,03	<0,06	0,032	a)	0,067	0,065	0,053	0,2
FFZ	Fundição	Metais II	<0,03	<0,2	0,094	a)	0,199	0,201	0,168	1
		Metals III	<0,124	<0,4	0,523	0,518	0,507	0,443	0,466	5
	1000	Partículas	<1	2	5,4	1,3	13,1	<1,6	4,1	20
FF3	Macharia	Aminas	<0,047	<0,05	<0,056	<0,103	<0,055	<0,0566	<0,58	5
		COVNM	2,8	16	35,0	28,3	94,6	30,1	83	110
		Partículas	3,7	1	2,4	3,3	5,2	2,4	2,2	20
		PCDD/PCDF	0,009	0,01	0.007	0,009	0,002	0,003	<0,005	0,1 b)
	0	Metais I	<0,028	<0,1	<0,040	0,0670	0,123	0,043	0,034	0,2
FF5	Fornos Fusão	Metais II	<0,021	0,2	<0,1250	0,1980	0,408	0,128	0,105	1
100		Metais III	<0,252	0,4	0,7290	0,6340	2,047	0,350	0,348	5
		NOx	<35	<29	<26,1	<27	<35,7	<25,2	<23,8	500
		COVNM	a)	a)	a)	a)	38,8	78,2	<8,5	110
	The purpose of	Partículas	10,2	4	14.1	5,4	4,3	4,1	4,3	20
	THE RESERVE OF	Metais I	<0,02	<0,06	<0,1810	0,0350	<0,038	0,057	<0,041	0,2
	F 1 33334 1	Metais II	<0,02	0,2	<0,1930	0,1060	<0,116	0,167	<0,124	1
FF7	Torre de	Metais III	<0149	0,3	0,5510	0,4910	0,423	0,625	0,377	5
"'	areias Space	COV	a)	a)	a)	a) a)	14,3	<8.7	<6.7	200
		NOx	a)	a)	a)	a)				500
	And the same of	COVNM	4	6	a)	a) a)	<22,8 11,7	<33,1 <8,7	<23,3	
America de la composito de la		Partículas	a)	a)		a)			<6,7	110
	Last the party	Metals I	a)	a)	a)		6,5	3,3	2,5	20
FF8	Acabamentos	Metais II	a)	a)	a)	(s	0,082	0,043	<0,049	0,2
		Metais III	a)	a)	a)	a)	<0,278	0,130	<0,152	1
		Partículas	c)	c)	a)	(8	0,592	<0,305	0,389	5
		Metais I			c)	c)	c)	c)	C)	20
FF9	Acabamentos	Metais II	c)	c)	c)	c)	c)	c)	(c)	0,2
				c)	c)	c)	c)	c)	c)	1
		Metais III	c)		c)	c)	c)	c)	5)	5
	Contract of	Partículas	14,2	19	7,4	17,3	7,8	6,7	6,4	20
EF4.0	Linhas	Metais I	<0,023	0,05	0,1190	0,0240	0,049	0,028	<0,048	0,2
FF10	Moldação	Metais II	<0,021	<0,1	0,1910	0,0860	0,148	<0,065	<0,135	1
	Disa	Metals III	<0,182	0,3	0,3870	0,5570	0,304	0,128	0,898	5
		COVNM	a)	a)	a)	a)	22,5	<10,5	13,6	110
		Partículas	7,8	1	13,1	1,4	6,4	17,0	1,8	20
	Torre de	Metais I	<0,02	0,05	0,0960	0,0330	0,125	0,053	0,039	0,2
FF11	areias Space	Metais II	<0,021	0,2	0,1890	0,0990	<0,326	0,158	0,118	_1
	around opuce	Metais III	<0,225	0,4	1,1100	0,3540	1,953	0,458	0,321	5
		COVNM	a)	a)	a)	a)	67,3	<9,4	11,0	110

Tabela 13 - Concentração de Poluentes (Cont. Pag. Seg.)

					Conce	ntração (mg	/Nm3)			
Fonte	Equipamento	Parâmetros	20	16	20	17	20	18	2019	VLE
			1º Ensaio	2º Ensaio	1º Ensaio	2º Ensaio	1º Ensaio	2º Ensaio	1º Ensaio	
		Particulas	3,0	5	15	5,4	3,5	1,2	5,0	20
FF12	Granalhagem	Metais I	<0,181	<0,05	0,0770	0,0510	0,061	<0,065	0,041	0,2
	Gratialilageili	Metais II	<0,024	0,1	<0,1880	0,1520	0,174	0,143	0,114	1
		Metais III	<0,322	0,3	0,5300	0,3170	0,414	0,314	0,303	5
		Partículas	17	18	18,2	8,3	8,0	3,0	3,6	20
		Metais I	<0,095	<0,06	<0,0790	0,0690	0,148	0,053	<0.047	0,2
	Linhas de	Metais II	<0,035	<0,2	<0,2030	0,2110	0,186	0,132	<0,142	1
FF13	Moldação	Metais III	<0,327	0,7	0,4500	0,7380	0,614	0,714	0.989	5
	Disas	COV	21	32	31	26,2	16,1	<13,3	6,2	200
		NOx	<35	<43	<28	<53,7	<34,8	<21,5	<25,3	500
		COVNM	7	30	24	22	13,1	<13,3	<6,2	110
		Partículas	3,6	2	6,5	1	5,8	3,9	2,2	20
	STATE OF THE STATE	Metais I	<0,061	<0,05	0.0668	0,0490	0,072	0.051	0,058	0,2
	Former de	Metais II	<0,034	<0,2	0,2001	0,0940	0,161	0,151	0,137	1
FF14	Fornos de	Metais III	<0,172	0,4	0.7408	0.2390	0,347	0,379	0,267	5
	Fusão	COVNM	4	4	11,5	9,6	38	21,4	12,2	110
		NOx	<35	<29	<28,3	<27	<34.9	<25.2	<24,6	500
		PCDD/PCDF	<0,006	0,01	0,005	<0,002	<0,0014	0,0022	0,006	0,11
		Partículas	49	5	8,2	5,1	19.8	<4,9	14,2	150
	A P SENGUINI	COV	21	4	55,8	6,8	25,4	<8,4	8,5	200
FF16	Forno de	COVNM	2	3	52,1	5,7	21,5	<8.4	<8,5	110
LLTO	Polimerização	CO	26	29	<14,3	35,4	66,3	<28,2	47.4	
		SO ₂	<49	6	16,8	136,1	16,54	5,98	3,62	500
	at the same	NOx	<35	<42	<32,5	<42,2	<54,3	<49,6	<39,2	500
	12 N. I	Partículas	4	2	10,8	1,6	5,2	3,8	6,2	30
	Exaustão do	COV	6	<5	18,3	8,6	11,0	5,1	<6,1	200
FF17	Túnel de	COVNM	6	<5	15,8	7,9	<11,0	<5,1	<6,1	110
	Preparação	Zn	0,01	0,05	0,241	0,153	0,314	0,109	0,142	0,5
		Ni	0,007	0,02	0,032	0,019	0,071	<0,026	0,024	0,1
i e	AND A STREET	Partículas	14	2	41,2	20,83	16	9,3	5,7	150
		SO2	<49	0,72	31,78	<27	7,60	1,44	2,48	500
F4.0	Queimadores	NOx	<35	<48	<40,6	6,9	<51,7	152.0	129,1	500
F18	do Túnel	COV	138	5	16	3,3	9,7	5,3	6,0	200
	10 - 1 - 10 x 10 11	COVNM	10	4	15	2,4	<9,7	<5,3	<6,0	110
		CO	96	97	81,1	<10,5	<27,4	<18,5	<19.0	

Tabela 13 - Concentração de Poluentes

Relativamente ao parâmetro partículas, verificou-se o cumprimento dos VLE definidos, assim como o valor de emissão associado (VEA) ao sector de atividade de $5-20\ mg/Nm3$.

A chaminé FF15 foi desativada em 2016, porque para aquecimento de águas para banhos se instalou uma caldeira mural mais eficiente e com uma potência térmica inferior a 100 kWt. Esta caldeira sendo mais eficiente vai ao encontro dos requisitos da certificação energética pelo seu melhor rendimento energético

a) De acordo com o estabelecido pela Licença Ambiental, LA nº 309/0.1/2014 a frequência de Monitorização é trianual, nova medição em 2018

b) Valores apresentados em ng I-TEC/m³N

c) Fonte INACTIVA desde 23-06-2014

Para os parâmetros que fazem parte dos BREF´S como aminas e PCDD/PCDF foram realizadas as seguintes monitorizações:

- Para o parâmetro aminas foram realizadas as duas monitorizações pontuais e verificou-se o cumprimento do VLE 5 mg/m3.
- Para o parâmetro PCDD/PCDF obtiveram-se valores muito inferiores ao VEA definido

Conforme referido na DA de 2015 para o ano de 2016 estava prevista a captação das emissões difusas associadas a transferência do ferro fundido dos fornos de fusão para os fornos *holding*.

Para esta área de fusão foram instaladas câmaras articuladas, associadas a todos os movimentos de um ciclo de fusão, garantindo a captação de difusas em todas as fases de movimento de massas de ar permitindo uma captação mais eficiente para os filtros de manga.

Em Dezembro de 2016 ficou a funcionar em pleno o sistema de captação das difusas na zona de transferência para os fornos *holding*. Com esta medida conseguiu-se uma melhoria significativa a nível das emissões difusas.

Durante o ano de 2017 foi melhorado a zona da plataforma da Fusão para confinamento e separação de áreas, bem como melhoria sistema das tampas dos fornos.

A Licença Ambiental LA nº 309/0.1/2014 estabelece que o parâmetro de partículas emitidas por tonelada de ferro fundido é no máximo 0,2 kg/Ton, sendo que a organização estabeleceu que a frequência de monitorização é anual, apesar de a Licença apenas obrigar à respetiva caracterização pontual.

Para o cálculo utilizaram-se os valores de emissão de partículas das chaminés de cada forno de fusão FF5 e FF14, obtidos nos dois ensaios de monitorização, este valor foi multiplicado pelo número de horas de funcionamento dos fornos.

Por forma a reduzir a quantidade de emissões difusas durante o ano de 2016 foi implementado o sistema de captação de difusas na zona de transferência do ferro fundido entre o forno de fusão e o forno *holding* de manutenção.

A monitorização foi feita nas aberturas circulares na zona dos fornos e junto a abertura do armazém de sucatas, os valores obtidos foram multiplicados pelo número de horas de funcionamento dos fornos ao longo do ano.

O somatório do caudal mássico de partículas emitido pelas chaminés dos fornos e o caudal das emissões difusas foi dividido pela quantidade de material fundido ao longo do ano o que dá os seguintes valores, conforme Tabela 14 demonstra os resultados decorrentes da implementação das medidas referidas.

Quantidade Metal Fundido ano 2018 (ton/Ano)	149903,4
Funcionamento em 2018 (horas)	4423
Caudal Anual de emissão de Partículas resultante da Chaminé FFS do Forno de Fusão (Kg/Ano)	1064
Caudal Anual de emissão de Partículas resultante da Chaminé FF14 do Forno de Fusão (Kg/Ano)	2579
4 Saídas circulares no armazém de sucatas	29
Caudal Anual de emissão de Partículas resultante dos fornos de Fusão - Ventiladores do armazém de sucata (Kg/Ano)	4
Total de partículas em 2018 (Kg/Ano)	3676
Rácio de Partículas resultante da Fusão do ano 2018 (Kg/ton)	0.025
/alor de referência BREF (Kg/ton)	0.2

Tabela 14 - Rácio de partículas por quantidade de ferro fundido 2018

No relatório de 25-02-2019 emitido pelo INEGI – Emissão de partículas com origem no processo de fusão de ferro, através de 5 saídas no telhado e das 2 chaminés dos fornos (2018), demonstra-se que o valor obtido para a emissão de partículas 0,020 Kg/Ton por quantidade de metal fundido é inferior ao valor definido no BREF sectorial, comprovando-se assim o cumprimento dos limites impostos pela Licença Ambiental LA nº 309/0.1/2014.

8.1.1. Indicador Principal "Emissões"

Com base nos valores obtidos nos relatórios de ensaio de acordo com o respetivo plano de monitorização foi possível determinar o caudal de emissão dos diferentes parâmetros de poluentes. Na tabela 15, apresentam-se os valores relativos aos anos de 2016, 2017 e 2018. Como base de cálculo foram consideradas as médias dos caudais mássicos das monitorizações efetuadas na base do plano de monitorização. Em 2018 o método de cálculo foi alterado, pois foi feito com a nova folha de cálculo emitida pela APA para o Relatório Ambiental Anual. Neste novo cálculo são considerados as médias dos caudais mássicos das monitorizações, mas sempre que esse valor for inferior ao limite de quantificação do método utilizado, considera-se 1/3 desse resultado (Dados da folha de cálculo do RAA). Na tabela 15 e gráficos 5 foram referenciados os valores das Partículas e dos Nox pelos dois métodos, independentemente do cálculo é notória uma melhoria dos respetivos rácios.

	Horas Trabalhadas	Toneladas Produzidas	Partículas (Kg/ano)	Partículas Kg /ton produzida	NOx (Kg/Ano)	NOx Kg /ton produzida	SO2 (Kg/Ano)	SO2 Kg /ton produzida	Ton CO2/tep
2016	4536	72002	25655,62	0,36	62630,82	0,87	75,58	0,016	2,21**
2017	4517	78795	25518,57	0,32	57036,16	0,72	690,23	0,0088	2,21**
2018	4423	75295	17745,08	0,24	52485,53	0,70	04.50	0.0040	
2018	4423	75295	17631,92*	0,23 *	25304,41*	0,34 *	94,59	0,0013	2,22**

Tabela 15 - Caudal anual de emissões gasosas

Pode-se concluir que o sistema se tornou mais eficiente, devido às várias melhorias implementadas no ano de 2016/2017, como se pode comprovar no ponto 7.1 desta declaração.

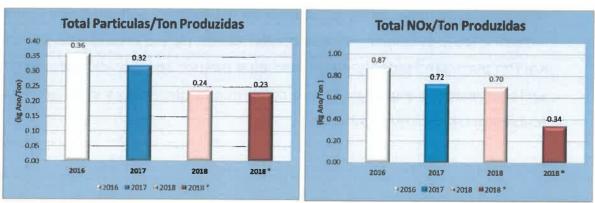


Gráfico 5 – Indicador Emissões: Partículas e NOx/Ton Produzidas *novo método de cálculo

^{*}novo método de cálculo

^{**} dados retirados do PRCE 2017-2024 (pag.70)

8.2. Compostos Orgânicos Voláteis

Tendo em consideração a entrada de novos produtos no processo de Tratamento de Superfície, que teve o seu início de laboração em Outubro de 2014, fez-se uma análise de identificação das principais substâncias com solventes e a verificação do enquadramento no item 6.7 do Anexo I e no Anexo VII do Decreto-Lei nº 127/2013.

Na tabela 16 apresentam-se as Matérias-primas que contêm solventes e as fases do processo produtivo em que estas substâncias são utilizadas, como se pode verificar o consumo de substâncias com solventes é inferior ao limiar de 200 Ton/ano não tendo enquadramento no Anexo I.

Relativamente às atividades que usam solventes orgânicos conforme Capitulo V do Decreto-Lei 127/2013, de 30 de Agosto, a SP utiliza substâncias com solventes na atividade de revestimento item 3 da Parte 1 do Anexo VII, no entanto o limiar é inferior ao definido no Quadro 53 da Parte 2 do mesmo Anexo. As substâncias com solventes são principalmente utilizadas na Macharia e no Tratamento de Superfície (processo electroforético) que não têm enquadramento no Anexo VII.

Já em 2013 houve uma redução significativa do consumo de substâncias com solventes, tendo a SP requerido à APA, em Março de 2014, a exclusão de enquadramento no âmbito do item 3 do artigo 96º do mesmo diploma, a qual foi aceite. Com base nesta nova quantificação para os consumos de 2015 e 2016, com as substâncias utilizadas na unidade de Tratamento de Superfície, mantem-se a situação de não enquadramento no anexo VII do Decreto-Lei nº 127/2013, de 30 de Agosto, conforme pode ser comprovado na tabela 16.

Substancia	Tipo de utilização	Quant. Solvente na Substancia (%)	Consumo anual Substancia (ton)	Consumo anual solvente para a produção atual (ton)	Atividades 6.7 Anexo I DL 127/2013 PCIP (ton/ano)	Atividades anexo VII DL 127/2013 (ton/ano)
Zip-slip 13-M	Desmoldação do macho	100	4,92	4,92	-	-
Anticorit MKR 4M	Testes Ultrassons- condução onda sonora	2	14,96	0,30	-	-
Demotex	Facilitar a desmoldação	100	0,08	0,08	-	-
Tinta Tenosil	Revestimento de machos	50	98,54	49,27	49,27	-
Solvente SR	Revestimento de machos	70	108,07	75,65	75,65	-
Araidite OH6-1	Dar forma ao molde - serralharia de moldes	1	0,04	0,00	0,00	-
Araldite OH 4/SR	Dar forma ao molde - Serralharia de Moldes	0	0,02	0,00	0,00	-
Tinta em Spray	Para pequenos retoques (pintura)	100	3,09	3,09	3,09	3,09
Powercron 693 resin	Tratamento superfície	1,14*	46,00	0,50	0,50	-
Catio paste CP458 A	Tratamento superfície	3,8*	13,75	0,52	0,52	-
Cationic Additive CA102E	Tratamento superfície	60*	2,42	1,45	1,45	•
Solvente S0228	Tratamento superfície	100*	3,24	3,24	3,24	-
	TOTAL	(ton/ano)	E WEST PART		133,75	3,09
	Valore	s referencia			150 Kg/h ou 200 ton/ano	5-15 ton/ano

^{*}Valores fornecidos pelo Fornecedor das Matérias-primas para o Tratamento Térmico - PPG em Abril 2015 relativos à % COV em cada substancia **Tabela 16: Matérias-primas com Solventes**

8.3. Indicador principal utilização do solo no respeitante à Biodiversidade

Para calcular a área verde da Sakthi Portugal foi somado a área coberta (nave fabril, parque de resíduos, parque TIR) e a área impermeabilizada não coberta (arruamentos, parque estacionamento, etc) e subtraído o resultado à área total da Sakthi.

A Biodiversidade é calculada utilizando o valores da ocupação da área coberta a dividir pelas ton produzidas e para a área verde utiliza-se o mesmo critério: total de área verde a dividir pelas ton produzidas.

		ANO	
Área total (m2)	2016	2017	2018
	65356	65356	65356
Área coberta (m2)	21750	21750	21750
Área impermeabilizada não coberta	16929	16929	16929
Área Verde (m2)	26677	26677	26677
Quantidade (ton produzida/Ano)	72002	78795	75295
Área coberta/Ton produzida	0,30	0,28	0,29
Área verde /Ton produzida	0,37	0,34	0,35

Tabela 17 - Biodiversidade: Ocupação solo Sakthi/Ton produzida

Gráfico 6 - Biodiversidade: Ocupação solo Sakthi/ton produzida

Da análise dos resultados pode-se concluir que não havendo aumento da área ocupada e registando-se um aumento da produção o rácio da Biodiversidade tem vindo ao longo dos anos a baixar, face ao investimento de índole produtiva que a organização tem vindo a introduzir no processo produtivo.

8.4. Ruído

A Sakthi Portugal, de acordo com o PDM encontra-se implantada numa zona mista.

Na sequência do pedido de renovação do registo EMAS em 2014 a APA considerou que não estavam reunidas condições favoráveis para a renovação, uma vez que as condições de realização do ensaio não foram as mais adequadas (ofício S26020-201405-DGA.DGQA de 09 de Maio de 2014) sendo ainda necessária a implementação de medidas de minimização de ruido.

A Sakthi Portugal, após implementação das medidas de minimização de ruido:

- Isolamento acústico de parte de fachada, da área dos acabamentos (investimento 30.000 euros)
- Isolamento acústico da sala dos compressores (investimento 7000 euros), realizou nova monitorização recorrendo a um novo Laboratorio Acreditado, para fazer face às questões levantadas pela APA quanto ao método utilizado para caracterização do Ruido de Fundo. O relatório LABRV/00346/15 foi enviado para análise em 27 de Fevereiro de 2015.

Após análise do novo relatório, a APA (oficio S045954-201508-DGA.DGQA de 08 de Setembro de 2015) considerou que o "relatório carece de validação devido à metodologia aplicada, uma vez que não é possível a paragem da instalação razão pela qual os resultados poderão ser inconclusivos". Considerou, também que a Sakthi Portugal "demonstrou empenho na resolução dos problemas", e que até fim de 2015 teria que demonstrar o cumprimento do Regulamento Geral de Ruido.

Face a este posicionamento, a Sakthi Portugal decidiu em Maio de 2015, fazer um novo Mapa de Ruido para identificar as contribuições do funcionamento da empresa nos pontos recetores e assim obter uma caracterização das possíveis fontes de ruido permitindo a intervenção, de uma forma mais eficaz, na redução do seu impacto na envolvente. Na sequência desta caracterização a Sakthi Portugal, identificou pontos de intervenção e implementou as seguintes medidas com vista à minimização do Ruido:

- novo atenuador sonoro , na fonte FF13 9080,00 euros
- novo atenuador sonoro , na fonte FF10 11928,00 euros
- novo atenuador sonoro na saída ventiladores fachada 570,00 euros

Para verificar o cumprimento do Decreto-lei 09/2007, a Sakthi Portugal efetuou a monitorização do ruído, junto a recetores sensíveis, 2 habitações, conforme se pode verificar na fotografia abaixo.

Nas Tabelas 18 e 19, apresentam-se os resultados da monitorização do Relatório LABRV/0121/16 datado de 28-01-2016:

Critério de Exposição

Receptor sensivel	Limite Legal dB(A)	Valores obtidos dB(A)	Periodo de referencia
P1	≤65	65	Diurno
	≤55	57	Noturno
P2	≤65	64	Diurno
	≤55	57	Noturno

Tabela 18 - Resultados da Avaliação do Ruído relativamente aos Limites de Exposição

Relativamente ao critério de exposição, o estudo determinou o cumprimento do ruido residual em período diurno, e em período noturno excede em 2 dB (A) o limite legal em ambos os pontos de caracterização. No entanto, determinou-se ainda o ruido Residual em ambos os pontos, proveniente de tráfego rodoviário, movimentação de pessoas e ruido animal, permitindo concluir que a responsabilidade do incumprimento legal em período noturno, não é atribuído à fonte em estudo, mas às condições externas à unidade.

Critério de Incomodidade

Receptor sensivel	Limite Legal dB(A)	Valores obtidos dB(A)	Periodo de referencia
	5	2	Diurno
P1	4	4	Entardecer
	3	0	Noturno
	5	1	Diurno
P2	4	4	Entardecer
	3	0	Noturno

Tabela 19 - Resultados da Avaliação do Ruído relativamente ao critério de Incomodidade

Na tabela acima é possível verificar que a Sakthi Portugal cumpre os limites legais estabelecidos do DL 09/2007 para o "critério de incomodidade" relativo ao ruído na vizinhança.

Deste modo pode-se então concluir que a Sakthi Portugal cumpre os requisitos aplicáveis à emissão de ruído para a envolvente, uma vez que o seu funcionamento não origina incremento aos níveis sonoros acima dos valores legalmente determinados, junto aos recetores sensíveis.

Este último relatório foi enviado à APA, a qual mediante os resultados apresentados considerou estarem reunidas as condições para que a condicionante relativa à suspensão do registo EMAS fosse ultrapassada, conforme o ofício n S5015038-201603-DGA.DGQA- 14 Março de 2016.

8.5. Resíduos

Na Sakthi Portugal existe um parque de resíduos devidamente cobertos, onde resíduos os gerados **Empresa** são na armazenados temporariamente. grandes quantidades resíduos gerados na Sakthi Portugal são a areia de fundição, a escória, a areia de machos e os resíduos de decapagem

mecânica. Nas tabelas seguintes apresentam-se as quantidades de resíduos gerados nos últimos 3 anos:

Produção de Resíduos Não Perigosos		Op. de	Quantidade	Quantidade	Quantidade	Quantidade	
Código LER	Designação		produzida 2016	produzida 2017	produzida 2018	produzida 2019 (Jan-Jun)	Unid
100903	Escórias de fornos	R10	2863,76	3120,1	3031,8	1256,02	ton.
100906	Areias de Machos	R10	880,58	901,44	1025,25	675,28	ton.
100908	Areias de fundição	R10	18069,2	22124	23806,7	10787,3	ton.
100999	Residuos efluentes de Ultrassons	D15	25,852	31,656	44,742	25,479	ton.
101099	Esferovite	D14/D9/ D1	0,186	0,243	0,436	0,080	ton.
120201	Aparas e Limalhas	R12/R13	-	-	86,97	-	ton.
120102	Resíduos de decapagem mecânica		4556,14	3842,88	4190,62	1108,68	ton.
120121	Mós e discos de rebarbagem	D14	0,705	0,553	1,135	-	ton.
150101	Papel e Cartão	R13	17,54	16,64	19,39	9,04	ton.
150102	Plástico e embalagens plásticas	R13	10,54	8,32	10,39	4,28	ton.
150103	Embalagens de Madeira	R12	425,88	387,68	530,84	266,74	ton.
150203	Esponjas	D14/D9	0,435	0,621	1,115	0,462	ton.
160117	Metais Ferrosos	R12	951,03	1060,92	2363,47	869,62	ton.
160199	Tapetes Borracha	R12	17	11,48	7,2	5,02	ton.
160216	Componentes retirados de equipamentos elétricos/eletrónicos não abrangidos 160215	R12	-	-	0,158	0,08	ton.
161104	Refratários usados	R10	831,22	812,36	702,28	317,68	ton.
180101	Resíduos Hospitalares Grupo IV	D15	0,009	0,009	0,010406	0,063	ton.
200199	Resíduos higiene	D15	0,079	0,084	0,077352	-	ton.
200399	Resíduos urbanos sem especificação	D15	5,44	17,22	20,3	6,52	ton.
170604	Materiais de isolamento	D9		-	3,5	-	ton.
191202	Metais ferrosos	R12	-	-	-	741,9	ton.
200136	Equipamento electricos e electronicos	R12		-	0,155	- 1	ton.

Tabela 20 - Resíduos Não Perigosos Gerados

Produção de Resíduos Perigosos		Op. de	Quantidade	Quantidade	Quantidade	Quantidade produzida	Unid
Código LER	Designação		produzida 2016	produzida 2017	produzida 2018	2019 (Jan-Jun)	
080111*	Tintas e vernizes	R12	1,349	-	0,889	-	ton.
080112*	Resíduos da ETAR	D15	-	1389,76	-	-	ton.
080113*	Lamas com tintas	D9/D15	11,092	9,084	24,13	1,859	ton.
100215*	Resíduos aquosos resultantes da limpeza das torres de arrefecimento		-	111,47	-	-	ton.
100909*	Poeiras de fornos		476,28	515,78	549,46	250,92	ton.
110111*	Liq. Lavagem com substâncias ácidas		7,6	-	-	-	ton.
130105*	Emulsões não cloradas (purga dos compressores)	R13	114,17	42,01	57,9	20,36	ton.
130208*	Óleos Não Clorados de motores e transmissões	R13	7,071	7,65	14,797	-	ton.
150110*	Embalagens contaminadas	R13	16,878	20,252	23,433	12,674	ton.
150202*	Absorventes, materiais filtrantes, panos de limpeza e vestuário de proteção, contaminados	D9/D14/ R12	31,018	27,991	29,423	16,11	ton.
160107*	Filtros óleo /Gasóleo	R4	0,749	0,416	0,514	0,15	ton.
160211*	Aparelhos ar condicionado	R12	0,56	0,413	0,497	1,064	ton.
160506*	Reagentes de laboratório	D15	1,039	1,065	0,796		ton.
161001*	Resíduo resultante do tratamento da amina	D15	210,893	212,595	272,622	154,816	ton.
180103*	Resíduos Hospitalares Grupo III	D9	0,039	0,039	0,032	0,0157	ton.
200121*	Lâmpadas Fluorescentes	R12	0,047	0,11	0,08	0,04	ton.
200135*	Condensadores sem PCB e material Informático		0,279	0,687	0,479	0,083	ton.

Tabela 21 - Resíduos Perigosos Gerados

Legenda Operação Destino: Conforme Anexo III da Lista Europeia de Resíduos (LER), publicada através da Portaria n.º 209/2004, de 3 de março, alterada pelo Decreto-Lei n.º 73 /2011, de 17 de junho

Estas operações dividem-se em Operações de Valorização de resíduos (código R) e Operações de eliminação de resíduos (código D).

- **D9 -** TRATAMENTO FÍSICO -QUÍMICO NÃO ESPECIFICADO EM QUALQUER OUTRA PARTE DO PRESENTE ANEXO QUE PRODUZA COMPOSTOS OU MISTURAS FINAIS REJEITADOS POR MEIO DE QUALQUER DAS OPERAÇÕES ENUMERADAS DE D01 A D12 (P.E. EVAPORAÇÃO, SECAGEM, CALCINAÇÃO, ETC.)
- D1 DEPÓSITO NO SOLO, EM PROFUNDIDADE OU À SUPERFÍCIE (P.E. EM ATERROS, ETC.)
- **D14 -** REEMBALAGEM ANTERIOR A UMA DAS OPERAÇÕES ENUMERADAS DE D01 A D13
- **D15 -** ARMAZENAMENTO ANTES DE UMA DAS OPERAÇÕES ENUMERADAS DE D01 A D014 (COM EXCLUSÃO DO ARMAZENAMENTO TEMPORÁRIO, ANTES DA RECOLHA, NO LOCAL ONDE OS RESÍDUOS FORAM PRODUZIDOS)
- R4 RECICLAGEM/RECUPERAÇÃO DE METAIS E COMPOSTOS METÁLICOS
- R10 TRATAMENTO DO SOLO PARA BENEFÍCIO AGRÍCOLA OU MELHORAMENTO AMBIENTAL
- R12 TROCA DE RESÍDUOS COM VISTA A SUBMETÊ-LOS A UMA DAS OPERAÇÕES ENUMERADAS DE R01 A R11
- R13 ARMAZENAMENTO DE RESÍDUOS DESTINADOS A UMA DAS OPERAÇÕES ENUMERADAS DE R01 A R12 (COM EXCLUSÃO DO ARMAZENAMENTO TEMPORÁRIO, ANTES DA RECOLHA, NO LOCAL ONDE OS RESÍDUOS FORAM PRODUZIDOS)

8.5.1. Indicador Principal "Resíduos"




Gráfico 7 - Total resíduos Não Perigosos produzidos/ Ton Produzida

Gráfico 9 – Total resíduos Perigosos produzidos/ ton Produzida

TOTAL	Total Anual Resíduos Perigosos Produzidos (ton)	Total Anual Resíduos Não Perigosos Produzidos (ton)	TON PRODUZIDAS/ ANO	RACIO PERIGOSOS	RACIO NPERIGOSOS	
2016	879,06	28655,60	72002	0,01	0,40	
2017	2339,32	32336,21	78795	0,030	0,41	
2018	975,052	35846,54	75295	0,013	0,48	

Tabela 22 - Resíduos Gerados Perigosos e não Perigosos / ton produzida

No Ano de 2017 a subida de produção residuos perigosos deve-se à produção de 2 residuos: o resíduo 080112* - resíduo da ETAR – que para despistagem da legionella e enquanto não tínhamos resultado da análise, como modo de prevenção, não utilizamos esta água no circuito interno de refrigeração e enviamos este como resíduo para operador licenciado, o resíduo 100215*- limpeza das torres de arrefecimento-decorre do positivo de legionella e da limpeza e desinfeção das torres de arrefecimento.

A soma deste dois residuos perigosos perfazem 1501,23 ton, se não tivesse ocorrido esta situação o total de residuos Perigosos seria 838,096 ton, sendo o racio de 0,011 a produção de residuos Perigosos seria inferior ao ano de 2016.

Em 2018, valores semilares ao ano 2016.

Gráfico 9 - Rácio Resíduo gerados/ ton Produzida

Os rácios dos Residuos Gerados/ton Produzida, estão estáveis.

Quanto aos Residuos específicos gerados pela Processo da Unidade de Tratamento de Superficie, encontram-se reflectidos na Tabela 20.

8.6. Energia

A SAKTHI Portugal, SA implementou um Sistema de Gestão de Energia de acordo com a Norma ISO 50001, encontrando-se certificada desde 18-01-2016.

O Sistema de Gestão de Energia abrange toda a unidade fabril situada na Maia, tendo sido identificados os utilizadores significativos de Energia (USE) cujo desempenho é monitorizado tendo em conta consumos de referência.

O Sistema de Gestão de Energia permite uma monitorização permanente dos consumos energéticos tanto a nível global como parcial, garantindo assim a identificação de áreas de melhoria e implementação de ações de racionalização de utilização de energia mais eficiente nos diferentes processos.

O Sistema de Gestão de Energia tem, como plataforma principal, um suporte de medição e registo de consumos automático e em tempo real, estando a informação disponível para consulta através de um portal específico na Internet.

O consumo de energia é para as fundições um dos aspetos ambientais mais significativos, uma vez que esta unidade é considerada consumidora intensiva de energia em conformidade com disposições legais do Decreto-Lei 71/2008.

De modo a dar resposta às exigências do diploma a Sakthi realiza Auditorias Energéticas periódicas tendo a mais recente ocorrido durante o ano de 2017.

A Sakthi Portugal tem um Plano de Racionalização de Consumos Energéticos (PRCE) aprovado pela Direção Geral de Energia e Geologia (Ref.^a 740/DSSE/8) em 31/08/2018 para o octeno 2017-2024.

O referido PRCE é para vigorar no período de 2017-2024 (inclusive), neste momento encontrando-se definidas as metas a atingir no decorrer dos 8 anos.

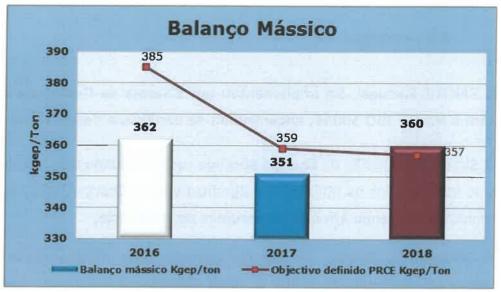


Gráfico 10 - Balanço Mássico em Kgep/ton

O rendimento placa fundida é um indicador para a Sakthi que revela a utilização racional da fonte energética em função do processo de fabrico. Na tabela seguinte, pode-se observar a evolução dos últimos 3 anos, do rendimento placa molde.

	Rendimento placa molde*				
	2016	2017	2018		
Disas	55	55,7	56,6		
GF	64,8	67,9	69,2		

^{* (}n = (Quantidade de peças fundidas/Quantidade de metal vazado) *100)

Para 2016 a instalação atingiu o balanço mássico de 362 Kgep/Ton FA, registando assim um valor de 6% abaixo da meta a atingir.

Para 2017 a instalação atingiu o balanço mássico de 351 Kgep/Ton FA, registando assim um valor de 2,2% abaixo da meta a atingir.

Para 2018 a instalação atingiu o balanço mássico de 360 Kgep/Ton FA, representando um desvio de cerca de 1% em relação à meta.

O objetivo de 357 Kgep/ton não foi atingido em 2018, devido a uma redução de produção em 3000ton, não se devendo portanto a ineficiências no processo produtivo.

Apesar da melhoria obtida nos dois anos anteriores o desvio registado em 2018 reflete a redução do volume produzido que ocorreu no 2º semestre devido à correção em baixa dos planos de entregas ao sector automóvel.

8.6.1. Indicador Principal " Energia"

	Eletrici (EE		Gás Na (GN		Gasóleo (GSL)		Consumo total	Ton Produzidas
Ano	KWh	Тер	m3	Тер	L Tep		Тер	Ton
2016	115.798.719	26.082	1.094.273	990	239.672	194	26.082	72.002
2017	122.876.551	27.690	1.183.585	1.071	247.201	200	27.690	78.795
2018	119.603.944	25.715	1.351.799	1.224	217.543	176	27.115	75.296
2019 (Jan-Jun)	58.598.249	12.599	726.617	657,67	79.161	77	13.334	34.803

Tabela 23 - Consumo de Energia

No grafico seguinte pode-se verificar o consumo especifico de energia eléctrica/ton ao longo dos últimos 3 anos

A redução registada deve-se exclusivamente à redução de produção, uma vez que como se pode verificar, produziram-se menos de 3000 ton relativamente ao ano de 2017

Gráfico 11 - Consumo Anual de energia elétrica (kWh)



Gráfico 11 – Consumo Especifico Anual de energia elétrica por quantidade de ton Produzida

No gráfico acima regista-se uma degradação dos indicadores não por ineficiência da unidade, mas devido ao facto do volume de negócio ter baixado.

A Sakthi Portugal, realizou um contrato a 18 anos com a EDP Comercial para o fornecimento de energia, sendo que este fornecedor, garante que a energia fornecida representa 40% de proveniência de fontes renováveis.

8.7. Consumo de matérias-primas.

A seguir, na tabela 24, apresentam-se as principais matérias-primas usadas na Sakthi Portugal com os respetivos consumos em toneladas para os últimos 3 anos divididas pelos respetivos sectores de produção.

	Fusão	Moldação	Moldação + Macharia	Preparação de areias	Resi	nas usada Macharia		Tra	tamento	de Superf	ície
ANO	Sucata (ton)	Nodulariza nte (ton)	Arela Nova (ton)	Aditivo areia Ecosil PT* (ton)	Isocure 328 (ton)	Isocure 628 (ton)	Isocure 702 (ton)	Pasta CP458A	Chemfos 700 R/OP (ton)	Chemfil Buffer/M (ton)	Chemfos AZN (ton)
2016	71359,23	1131,1	9396,1	10715,4	89,25	71,5	33,1	24,94	7,0	1,53	0,83
2017	75478,22	1086	9246,5	12099,7	89,25	73,7	35,49	12,45	17,0	3,38	2,08
2018	71572,68	1183,4	10337,2	11692,2	101,85	84,53	48,62	13,75	16,0	3,58	0,80
2019 (Jan-Jun)	32313,85	575,5	5983,4	5300,4	58,8	48,4	30,92	3,75	6	1,33	0,15

^{*}Aditivo Areia Ecosil PT- mistura de Bentonite mais pó de carvão

Tabela 24 - Consumo das Principais Matérias-Primas Usadas

8.7.1 Indicador Principal "Materiais"

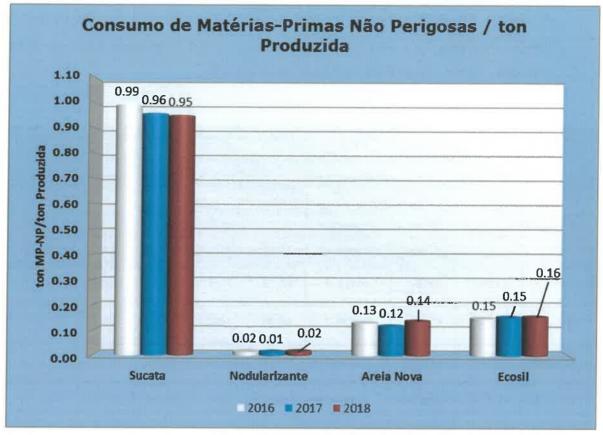


Gráfico 12 - Consumos de Matérias-Primas Não Perigosas/ ton Produzida

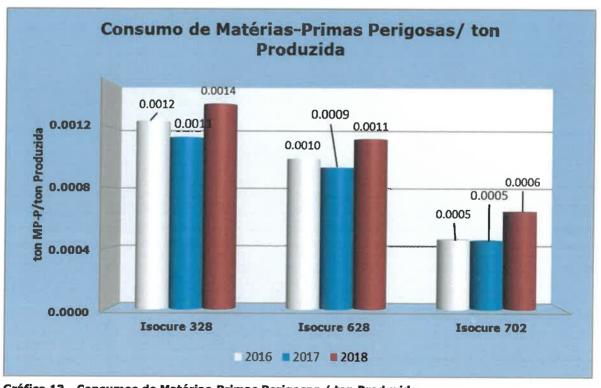


Gráfico 13 - Consumos de Matérias-Primas Perigosas / ton Produzida

	Total Anual Matérias- primas (ton)	Matérias- Produzidas		
2016	92768,7	92768,7 72002		
2017	98108,9	78795	1,245	
2018	95020,5	75295	1,262	

Tabela 25 – Total Matérias-primas consumidas (Perigosas e Não Perigosas) / ton Peças Produzidas

O consumo de matérias-primas é diretamente proporcional à produção verificada na empresa.

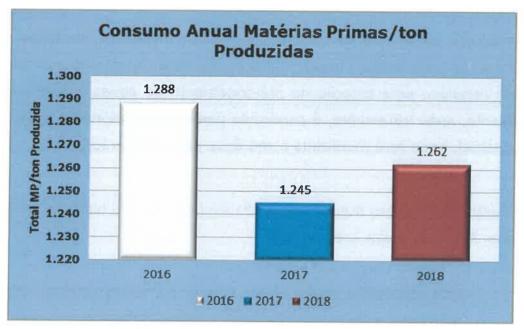


Gráfico 14 - Consumos Anual de Matérias-Primas (Total) / ton Produzida

8.8. Consumo de água

O abastecimento de água para consumo industrial, é feito através de quatro furos e de uma captação superficial, no ribeiro de Almorode.

Para consumo humano (bebedouro, cantina e balneários) utiliza-se água fornecida pelo SMAS da Maia.

O efluente doméstico da Sakthi Portugal é descarregado no coletor municipal, não estando a Sakthi Portugal obrigada a qualquer tipo de monitorização relativamente ao controlo da qualidade do efluente descarregado.

Da secção de pintura de cataforese resultam efluentes industriais inerentes aos banhos de tratamento e lavagem das peças. Para tratamento dos efluentes líquidos está instalado uma Estação de pré-tratamento de águas Industriais (EPTAR^{a)}). O efluente, após tratamento, é conduzido para o reservatório de água para consumo industrial, onde será reutilizado como água para refrigeração dos fornos.

A Sakthi possui cinco licenças de utilização dos recursos hídricos, para captação de água. Assim as atuais licenças são:

- AC6 -Captação do Ribeiro Licença n.º L009159.2019.RH2
 Volume máximo mensal do mês de maior consumo 16 500 m³ / mês
- AC1 Furo 8- Licença n.º A007712.2014.RH2
 Volume máximo mensal do mês de maior consumo 2300 m³ / mês
 Volume máximo mensal do mês de maior consumo 27600 m³ / ano
- AC2 Furo 7 Licença n.º A009157.2019.RH2
 Volume máximo mensal do mês de maior consumo 460 m³ / mês
 Volume máximo mensal do mês de maior consumo 5520 m³ / ano

a) Dimensionada para um caudal efluente bruto de 3m³/h

AC8 - Furo Equalizador - Licença n.º - A03108/2012-RH2.11998A Volume máximo mensal do mês de maior consumo - 4300 m³ / mês

AC9 - Furo Ringue - Licença n.º A02188/2012-RH2.11998.A

Volume máximo mensal do mês de maior consumo -1500 m³ / mês Caudal anual autorizado - 18000 m³ / ano

				-	-	Cons	umos	das	Capta	ações				
A E		Jan.	Fev.	Mar.	Abr.	Malo	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total Anua (m3)
	2016	43	103	537	264	458	854	901	902	828	507	243	373	6013
	2017	369	544	393	685	483	1681	2102	1554	1865	1066	659	383	11784
AC1	2018	87	59	90	270	634	1070	1018	1208	291	295	132	0	5154
	2019 (Jan-Jun)	31	198	680	138	695	833							2575
	2016	361	340	284	0	0	0	328	322	325	316	310	319	2905
	2017	447	364	390	360	420	361	430	452	431	455	447	455	5012
AC2	2018	455	451	457	450	454	438	401	375	267	329	430	173	4680
	2019 (Jan-Jun)	0	0	45	30	447	252							774
	2016	9722	7102	4424	5713	6021	6510	7131	8445	12282	13357	8020	3904	92632
	2017	5973	15295	4286	7043	7068	7477	5033	4030	5335	2822	59	18	64439
AC6	2018	4155	5184	0	0	1271	49	1060	1040	1308	4685	7536	2178	28466
	2019 (Jan-Jun)	5284	6552	6590	9983	9415	6764							44588
	2016	358	124	281	127	162	218	427	831	817	234	56	85	3720
	2017	25	24	24	255	39	170	176	20	25	1	2	4	765
AC8	2018	12	1	0	0	5	11	12	- 3	14	7	2	3	70
	2019 (Jan-Jun)	2	333	560	638	701	815							3049
	2016	112	3	2	150	204	220	19	0	0	139	148	199	1196
	2017	220	292	201	271	319	609	491	231	747	503	359	235	4478
AC9	2018	170	130	168	225	415	515	483	450	283	429	359	182	3809
	2019 (Jan-Jun)	49	1	0	2	3	3							58

Tabela 26 - Consumos de Água 2016/2017/2018 e 2019 de Jan-Jun

Conforme podemos constatar na tabela anteriormente apresentada, a captação principal da empresa diz respeito à captação superficial que, por gravidade, retira água do ribeiro de Almorode para um poço. Este abastece a piscina coberta e envia a água para as galgas onde é misturada com a areia e aditivo areia Ecosil.

Para o caso do AC2 - furo nº7 a captação é relativamente uniforme visto estar relacionada com o processo industrial. A água captada deste furo destina-se basicamente à refrigeração dos fornos, sendo a resultante conduzida para a piscina de refrigeração e reutilizada.

O consumo de água do AC1 - furo nº 8, AC8 e AC9 - estão destinados para o processo Industrial Tratamento de Superfície.



Gráfico 15 - Consumos de Água - AC1

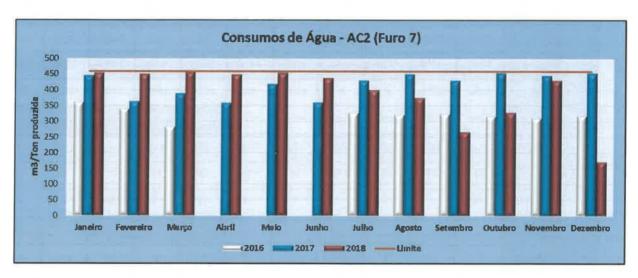


Gráfico 16 - Consumos de Água - AC2

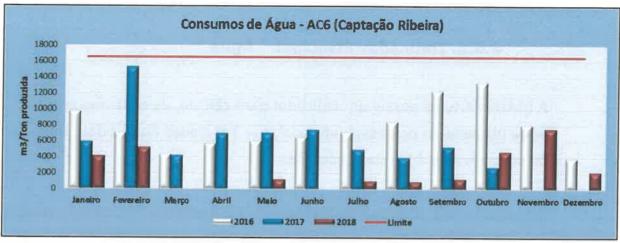


Gráfico 17 - Consumos de Água - AC6

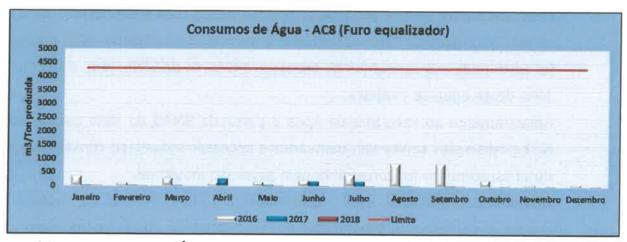


Gráfico 18 - Consumos de Água - AC8

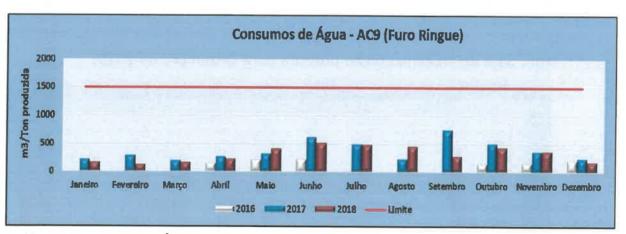
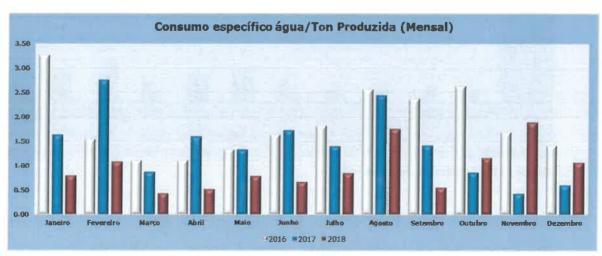


Gráfico 19 - Consumos de Água - AC9

Analisando os valores obtidos nos gráficos e comparando-os com os volumes mensais autorizados de captação imposto pelas licenças, verificamos que nenhum destes valores ultrapassou o autorizado nas licenças. Logo foram cumpridos todos os limites.

8.8.1. Indicador Principal " Água "


A Sakthi Portugal possui um indicador para cálculo, do consumo específico mensal de água utilizada no processo industrial, por Toneladas Produzidas. Utilizaram-se todos os consumos de água das captações.

A captação AC4, é efetuada diretamente para uma piscina com a capacidade de 472 m³, esta captação tem como objetivo garantir as necessidades de água em caso de incêndio, como não houve a sua utilização por motivos de incêndio, esta água foi desviada para o reservatório de armazenamento com a capacidade de 313 m³ para utilizar no processo. Face ao exposto, o valor quantitativo de água da captação AC4 foi adicionado aos consumos do processo em cerca de 90%, já que se considerou que 10% desta água se evapora.

Relativamente ao consumo de água a partir do SMAS da Maia com a denominação AC7 (instalações sanitárias, balneários e processo industrial) considerou-se que 50% do abastecimento foi consumida pelo processo industrial.

Atualmente a empresa está a quantificar a água com base na captação e não no respetivo consumo. A Sakthi, SA, em Dezembro de 2012, instalou um conjunto de contadores nos pontos de maior consumo de água que permitem quantificar, de um modo mais fidedigno, os consumos específicos associados ao processo.

Os dados de consumo medidos nestes novos contadores estarão disponíveis on-line com data de implementação prevista para Dezembro de 2019.

	Total ton Produzidas	anual Total	
2016	72002	130474	1,81
2017	78975	109050	1,38
2018	75295	97931	1,30

Tabela 27 - Indicador consumo água (m3) / ton produzida valores anuais

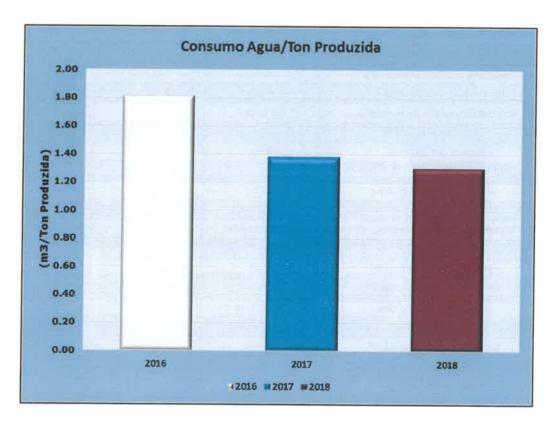


Gráfico 20 - Consumos específico Anual de água (m3) / Total anual ton Produzidas

Conforme se pode verificar nos últimos 2 anos têm-se mantido os baixos consumos específicos de água, o qual se deve ao aumento da produção com minimização das perdas do processo.

Nota: Devido às ações desenvolvidas para eliminar a legionella, foi necessário em 2017 esvaziar as 2 piscinas do circuito de arrefecimento dos fornos que funcionam em circuito fechado, pelo que como esperado em 2018 a Sakthi obteve uma redução deste rácio demonstrando a eficácia das ações empreendidas.

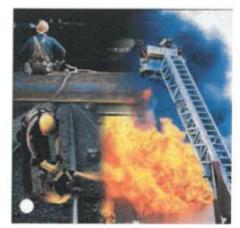
8.9. Equipamento de ar condicionado

Na Tabela seguinte pode-se verificar os equipamentos de ar condicionado com que a empresa se encontra equipada.

		-	Potencia		Quant.	Co2
	Localização	Marca	(kW)	Fluído	Fluido (Kg)	(Ton)
SP01	Chiller Tratamento de Superfície	Carrier	27.8	R410A	15	31.32
SP02	Chiller Vazamento	Johnson Controls	16.1 / 13.8	R410A	3.4	7.10
SP07	Administração	Mitsubishi Electric	6/6.8	R410A	2.2	4.60
SP08	Gabinete Parque de Resíduos	General Fujitsu	2.95 / 2.60	R410A	0.65	1.36
SP09	Subestação	Mitsubishi Electric	9/7.2	R410A	3,5	7.31
SP10	Administração	Mitsubishi Electric	9/7.2	R410A	3.5	7.31
SP1 3	Serviços técnicos Metrologia	Fuji Electric	3.95 / 3.25	R410A	0.75	1.57
SP13A	Serviços técnicos Metrologia	Daikin	3,95 / 3,25	R32	0,6	0,54
SP16	Wc'S - Serviços Técnicos -	Daitsu	0.69 / 0.64	R410A	0.68	1.42
SP17	Gabinete Controlo do Processo	Fuji Electric	2.95 / 2.6	R410A	0.65	1.36
SP19	Granalhadora- CT4	Rittal	3	R134a	1.6	2.29
SP20	Granalhadora- CT4	Rittal	3	R134a	1.6	2.29
SP21	Gabinete Logística Schnellecke	Dalkin	2.5	R410A	0.79	1.65
SP22	Wc'H - Serviços Técnicos	Daitsu	0.89 / 0.82	R410A	0.92	1.92
SP24	Portaria	General Fujitsu	2.3	R410A	0.6	1.25
SP25	Wc'S - Serviços Técnicos	Mitsubishi Electric	8.6 / 7.1	R410A	2.7	5.64
SP28A	Ponte Rolante 2	Mitsubishi Electric	3.6 / 3.15	R410A	0.72	1.50
SP30A	Gabinete Fusão (portátil)	Troia	3.5 / 2	R410A	0.81	1.69
SP90B	Gabinete Fusão (portátil)	Troia	3,5 / 2	R410A	0.81	1.69
SP31	Serralharia de Moldes	General Fujitsu	2.95 / 2.6	R410A	0.65	1.36
SP32	Gabinete Serralharia de Mecânica	Fuji Electric	3.95 / 3.25	R410A	0.75	1.57
SP33	Gabinete Space (portátil)	Gree	3.5 / 2	R410A	0.81	1.69
SP35	Gabinete Space 1	Haier	24000 btu/h	R410A	2.8	5.85
SP36	Gabinete Space 2	Daikin	-10. / 10.0	R410A	2.9	6.06
SP38A	Raios-X	Daikin	13.5 / 12	R410A	2.9	6.06
SP39A	Datacenter	Himod	10,6	R407C	2.4	4.25
SP39B	Datacenter	Himod	10.6	R407C	2.4	4.25
SP40	Sala Administração Secretariado	Daikin	3.5 / 3.5	R410A	1.2	2.51
SP41	Gabinete da Valeo	Daikin	7.5 / 6.8	R410A	2.75	5.75
SP42	Sala Reunião Sophia de Mello Breyner	Mitsubishi Electric	3.2 / 2.5	R410A	0.7	1.46
SP43	Sala Reunião Eça Queirós	Mitsubishi Electric	3.2 / 2.5	R410A	0.7	1.46
SP44	Sala Reunião Florbela Espanca	Mitsubishi Electric	3.2 / 2.5	R410A	0.7	1.46
SP45	Gabinete QE Valeo	Clivet	14	R410A	7	14.62
SP46	Operações (Un1)	Daikin	14 / 12.5	R410A	2.9	6.06
SP47	Operações (Un2)	Daikin	14 / 12.5	R410A	2.9	6.06
SP48	Operações (Un3)	Daikin	14 / 12.5	R410A	2.9	6.06
SP49	Qualidade	Daikin	11.2 / 10	R410A	2.9	6.06
SP50	Laboratório 1	Daikin	11.2 / 10	R410A	2.9	6.06
SP51	Laboratório 2	Daikin	11.2 / 10	R410A	2.9	6.06
SP52	Gabinete HC	Daikin	4/3.4	R410A	1.2	2.51
SP53	VRV Administração	Dalkin	50 / 45	R410A	16.2	33.86
SP54	Administração (SPLIT 1)	Daikin	4 / 3.4	R410A	1.2	2.51
SP55	Administração (SPLIT 2)	Dalkin	4/3.4	R410A	1.2	2.51

	Localização	Marca	Potencia (kW)	Fluído	Quant. Fluido (Kg)	Co2 (Ton)
SP56	Administração (SPLIT 3)	Daikin	4/3.4	R410A	1.2	2.51
SP57	Administração (SPLIT 4)	Daikin	4/3.4	R410A	1.2	2.51
SP58	Administração (SPLIT 5)	Daikin	4/3.4	R410A	1.2	2.51
SP60	Enfermaria	Maxa	1.010/ 0.915	R410A	0,85	1.78
SP61	Posto Médico 1	Maxa	1.010/ 0.915	R410A	0.85	1.78
SP62	Posto Médico 2	Maxa	1.010/ 0.915	R410A	0,85	1.78
SP63	I&D Split 1	Daikin	6.8 / 7.5	R410A	2,9	6.06
SP64	I&D Split 2	Daikin	9.5 / 10.8	R410A	4	8.36
SP65	I&D Split 3	Daikin	2.5 / 2.8	R410A	1	2.09
SP66	I&D Split 4	Daikin	10.8 / 9.5	R410A	4	8.50
SP67	I&D Split 5	Daikin	2.5 / 2.8	R410A	1	2.09
SP68	I&D Split 6	Daikin	2.5 / 2.8	R410A	1	2.09
SP72	Serviços Técnicos	Daikin	114	R410A	3.65	7.63
SP73	Cantina (U1) - CT	Daikin		R410A	1.2	2.51
SP74	Cantina (U2) - Comissão SST	Daikin		R410A	1.7	3.55
SP75	Cantina (U3) – sala Formação	Daikin		R410A	2.1	4.39
SP76	Gantina VRV (U4)	Daikin		R410A	15.2	31.74
SP77	Cantina (U5.1/5.2) - Logística	Daikin		R410A	2.99	6.24
SP78	Cantina (U6) - P&C	Daikin		R410A	2.5	5.22
SP79	Gabinete (U7) SF	Daikin	Property and the	R410A	1.8	3.76
SP80	Sala formação (U8) P&C - Esq	Daikin		R410A	2.9	6.06
SP81	Sala formação (U9) P&C - Dir	Daikin		R410A	2.9	6.06
SP82	Sala Servidor	Mitsubishi Electric		R410A	0.98	2.05
SP83	QE Aspiração Fusão A	Samsung	7.7 / 6.8	R410A	1.45	3.03
SP84	QE Aspiração Fusão B	Samsung	7.7 / 6.8	R410A	1,45	3.03
SP85	Serviços Técnicos - Laboratório	Mitsubishi Electric	5.20 / 5.0	R410A	2.4	5.01
SP86	Secador Sala compressores I	Ingersol Rand	12.17	R407C	13	23.06
SP87	Secador Sala compressores II	Ingersol Rand	12.17	R407C	13	23.06
SP88	Laboratório - Trat. Superfície	Daikin	2.5 / 2.0	R410A	1	2.09
SP89	Gabinete Tratamento Superfície	Daikin	2.5 / 2.0	R410A	1	2.09
SP90	Armazém de Sobresselentes	Mitsubishi Electric	3.5 / 3.5	R410A	1.15	2.40
SP91	Laboratório- Serra	Maxa	5.2 / 5.8	R410A	1.86	3.89
SP92	Sadei Datacenter	Sadei		HFC-227ea	17	54.74
SP93	Ponte Rolante 1	Mitsubishi Electric	3.15 / 2.25	R410A	0.7	1.46
SP94	Serralharia Nova	Daikin	14	R410A	3.6	7.52
SP95A	Gabinete Vazamento (Portátil)	Daitsun	5,9 / 50	R410A	0.61	1.27
SP96A	Gabinete Vazamento (Portátil)	Daitsun	5,9 / 5,0	R410A	0.61	1.27
SP97	PT1	UNIFLAIR	TIPE STATES	R410A	4.5	9.40
SP98	Gabinete Space (Portátil)	HAIER	3.8 / 3.52	R410A	0.61	1.27

Os equipamentos de ar condicionado, com emissão CO superior a 5 Ton, são alvo de manutenção preventiva Anual relativamente à verificação de fugas de fluido de refrigeração por empresa Certificada com técnicos devidamente Acreditados, de acordo com o previsto pelo Regulamento (UE) 517/2014, DL 145/2017 e Declaração de Retificação n 3-A/2018.


8.10. Gestão de Emergência

Uma das preocupações principais da Administração da empresa é a prevenção de todo o tipo de acidentes e a minimização das suas consequências, em termos de vidas humanas, bens materiais e económicos, por eles provocados.

O Plano de Segurança Interno é uma ferramenta fundamental para se atingir esse objetivo.

Neste plano estão identificados 4 tipos de riscos:

Riscos tecnológicos como o próprio nome indica os riscos associados a toda a tecnologia presente no processo produtivo da Sakthi Portugal. Sendo de destacar o risco de incêndio/explosão como o de maior probabilidade de ocorrer devido à natureza do processo de fundição.

são

Riscos da Natureza estão previstos, apesar da probabilidade de ocorrência ser média. Destacam-se o risco sísmico e o risco de inundação e o risco de queda de árvores.

Riscos sociais, apesar de terem uma probabilidade diminuta, destacam-se a intrusão/roubo, o risco de ameaça de bomba e o risco de sabotagem.

<u>Riscos Biológicos</u>, que estão previstos, apesar da probabilidade de ocorrência ser baixa, são Gripe A, Legionella. Para a Gripe A existe um Plano de Contingência para diversos cenários, previstos no Plano de Segurança Interno, para a Legionella o seu controlo está previsto no Plano de Monitorização anual.

No Plano de Segurança Interno, estão contempladas as diversas situações de emergência passíveis de ocorrerem, bem como, os respetivos planos de atuação e procedimentos de intervenção.

Todos os funcionários das instalações são informados destes procedimentos e todos terão o dever de os cumprir, quando necessário.

O plano de Segurança interno prevê também a realização de exercícios de acidentes das possíveis situações de emergência que possam ocorrer, a fim de se averiguar a eficácia do mesmo.

O plano de Segurança interno obteve o parecer Favorável da ANPC, em 07-11-2013, de acordo com o ofício OF/26220/CDOS13/2013.

Em 11-02-2016 foi realizada a vistoria de inspeção regular à ANPC, sob o nº PSCI/12269/CDOS13/2015, relativamente ao Plano de Segurança Interna, após ter sido obtida a aprovação das medidas de autoproteção referente ao processo 037200 da ANPC, foi emitido relatório no qual constam apenas 2 recomendações.

Durante o ano de 2018, realizou-se 1 simulacro. As conclusões foram registadas em relatório próprio:

1º Simulação de um derrame de amina, com evacuação sectorial na zona da Macharia. Na sequência do exercício foram definidas 3 ações de melhoria que à data já se encontram concluídas.

8.11. Análise da Conformidade Legal

Âmbito	Requis	ito Legal	Ações a verificar	Análise da Conformidade	
	Page of the	Estabelece o regime jurídico relativo à prevenção e controlo integrados da Poluição	Analise da aplicabilidade da categoria 6.7 (consumo de solventes> 150Kg/hora ou 200t/Ano)	PGS 2010 – envio 19-04-2011 PGS 2011 – envio 30-03-2012 PGS 2012 – envio 28-03-2012 APA excluiu SP registo COV carta S22602-2014-DGA-DGAR	
	Orne users	S PINNE S		Apresentação do PDA 2009 (05-11-2009)	
	is all multi	LE DE TOTAL	gor all calation	Apresentação à APA do RAA2015 entrega 29-04-2016, RAA2016 entrega 05-04-2017, RAA2017 entrega 30-04- 2018	
	numajos k	Landing to a	in on all a set	Apresentação à APA em 25-02-2015 de Relatório (item 6.3 da nova LA 309/0.1/2014) das substâncias perigosas relevantes por forma à APA proceder à apreciação e avaliação e estabelecer necessidade ou dispensa de apresentação de Relatório Base	
Prevenção e Controlo Integrado da	Decreto-lei nº 127/2013 - 30		Notificação em caso de	Queda da chaminé FF14 reportada no dia seguinte ao temporal, dia 05-02-2014, situação corrigida e reportada à APA dia 03/04/2014	
Poluição (PCIP)	Agosto	Categoria de	emergências num prazo de 24 h	Em 2014, 2015, 2016, 2017 e 2018 não houve incidentes a reportar	
	51,901,040),0	atividade 2.4 (Anexo I)	Qualquer alteração à LA tem que ser previamente submetida à APA num prazo de 3 dias para apreciação	Pedido de alteração da LA no âmbito da inclusão de um novo processo, tratamento de Superfície – emissão de nova LA 309/0.1/2014 em 26 Agosto de 2014,	
			Pedido de renovação da LA até 75 dias anteriores ao seu termo	Formulário de licenciamento submetido no portal 08/03/2019	
			Articulação com outros regimes de licenciamento - CELE	Sakthi não está abrangida: Potencia Térmica instalada Inferior a 20 MTV	
Responsabilida de Ambiental	Decreto-Lei no 147/2008 - 29 de Julho	Estabelece o regime jurídico da responsabilida de por danos ambientais	Subscrição seguro responsabilidade Ambiental	Declaração seguradora GENERALI de seguro Resp Civil – Apólice nr. 0151 1007991 de 01-01-2019 a 01-01-2020 e Responsabilidade Ambiental Apólice nr 154 10000904 de 01-01-2019 a 01-01-2020, renovados anualmente	
		THE STATE OF	Categoria 2d.		
		Criação de	Registo PRTR	Preenchimento anual do registo, submetido à APA PRTR	
Registo de Emissão e	Decreto-Lei nº 127/2008 - 21 de Julho	registo Europeu das Emissões e	Comunicação à APA das emissões para o ar, água e	2015 Submetido 04-07-2016, validado 27-01-2017, PRTR 2016 Submetido a 05-07-2017, validado 05-01-2018, PRTR 2017 submetido 13-07-2018, validado 15-10-2018	
Transferências de Poluentes (PRTR)		Transferências de Poluentes	solo, transferências dos resíduos perigosos e não perigosos	A Sakthi aguarda que a APA disponibilize o novo programa	
	Decreto-Lei nº 6/2011 - 10 Janeiro	Alteração ao Decreto-Lei 127/2007	Preenchimento do Relatório Único até 15 Maio	Relatório Único submetido a 23-04-2018	
Água	Lei nº 58/2005 – 29 Dezembro	Estabelece as bases para a gestão sustentável das águas	Licença de utilização de títulos para captações	OK- Todos os furos/poços com motor> 5CV com licença: AC1-A007712.2014.RH2, AC2 - A009157.2019.RH2 AC6-L009159.2019.RH2 AC8- A03108/2012-RH2.11998A AC9-A02188/2012-RH2.11998A	

Âmbito	Requis	equisito Legal Ações a verificar		Análise da Conformidade
Água (cont.)	Decreto-Lei nº 226-a/2007 – 26 de Maio	Estabelece o regime de utilização dos recursos	Monotorização do consumo de água envio trimestral das leituras dos contadores dos furos à ARH	Leituras de 2018 1º trim 06-06-2018 2º trim 10-07-2018, 3º trim 19-10-2018, 4º trim 15-01-2019. Leituras 2019: 1º trim 31-05-2019, 2º trim 23-07-2019. Também são reportadas as leituras dos consumos de água no
	Decreto-Lei nº 73/2011 - 17 de Junho (Altera o DL 178/2006 de 5 de Setembro) Portaria nº 145/2017, 26 de Abril	Estabelece o regime geral de gestão de resíduos	Produtor deve separar por forma a garantir a valorização dos resíduos Encaminhamento dos resíduos para entidades licenciadas Transporte de resíduos – Gula GAR	Armazenamento no parque de resíduos e de sucata e encaminhamento para operadores devidamente licenciados com vista à sua valorização quando aplicável OK- Classificação / encaminhamento dos resíduos AMB-025, pedido às entidades de destino cópia dos alvarás de autorização. A partir de Janeiro de 2018 sistema disponível para egar
Resíduos	Portaria 1408/2006 – 18 de Dezembro	Estabelece o Regulamento do Sistema Integrado de Registo Eletrónico de Resíduos	Registo eletrónico de resíduos - MIRR	Submissão MIRR 2015 submetido 07-03-2016, MIRR 2016 submetido 28-03-2017, MIRR 2017 submetido 27-03-2018, após abertura para retificação de valores nova submissão 14-05-2018 MIRR 2018 submetido 29-03-2019, após abertura para retificação de valores nova submissão 14-05-2019
	Despacho nº 242/96 - 13 de Agosto	Classificação e segregação dos resíduos hospitalares	Triagem segundo a classificação dos mesmos e transporte para entidades licenciada	OK- Classificação / encaminhamento dos resíduos AMB-025, pedido às entidades de destino cópia dos alvarás de autorização.
	Decreto-Lei nº 153/2003 - 11 de Julho	Estabelece a Gestão de óleos usados e novos	Encaminhamento dos resíduos para entidades Licenciadas	OK- Lista de entidades licenciadas AMB-013 com data de validade das licenças dos destinatários e transportadores de resíduos
	Portaria nº 1028/92 – 05 de Novembro	Estabelece as normas de segurança e identificação para o transporte de óleos usados	Prevenção e controlo de derrames Existência na cabina dos veículos de ficha Dados de segurança durante o transporte, carga ou descarga	OK-Resíduos são acondicionados em bacias de retenção de maneira a garantir que os derrames não ocorram OK-Ficha Dados de Segurança disponível durante o carregamento e transporte dos resíduos
РСВ	Decreto-Lei nº 277/99 – 23 de Junho – alterado e aditado Decreto-Lei nº 72/2007 – 27	Regras para a eliminação de equipamentos com PCB	Obrigação de eliminação até final de 2010 Identificação equipamentos Inventário e comunicação ANR	Ok- Os equipamentos que continham concentrações superiores a 500PPM de PCB- foram eliminados em Ago 2010- comunicação à autoridade com envio dos comprovativos Ver Lista de equipamentos: Transformadores e condensadores- sem PCB
Gases Fluorados	Regulamento (UE) 517/2014 Decreto Lei	Gases Fluorados com	Lista de equipamentos de refrigeração – existência de equipamentos com gases Fluorados	Lista de equipamento de Refrigeração atualizada Gases fluorados 2017 Submissão equipamentos com gases fluorados em 06-03-2018 Gases fluorados 2018 Submissão equipamentos com gases fluorados em 29-03-2018 Gases fluorados 2019 Submissão equipamentos com gases fluorados em 29-03-2019
com efeito de estufa	145/2017, 30 de Novembro	efeito de estufa	Utilização somente de técnicos qualificados para as operações de manutenção/recupera ção/reciclagem/valoriz ação e destruição de substâncias regulamentadas	Subcontratação do serviço assegurando a qualificação dos técnicos e o preenchimento da Ficha de Intervenção

Âmbito	Requisi	Requisito Legal		Análise da Conformidade		
MP Perigosas	Decreto-Lei nº 98/2010 – 11 de Agosto	Estabelece o regime a que obedecem a classificação, embalagem e rotulagem das substâncias perigosas para a saúde humana ou para o ambiente	Embalagem e rotulagem de substâncias perigosas – Fichas de dados de Segurança	Solicitação aos fornecedores de Fichas de dados de Segurança atualizadas segundo este regulamento. Avaliação das novas Fichas de Segurança pelo Técnico de Segurança, quando cumprem – Aceitação, Rejeição dos produtos que não garantam o cumprimento da legislação.		
		1. 1. 1.	Registo consumo dos geradores de emergência	OK-Registo de consumo AMB-021.		
	Decreto-Lei nº	Estabelece o regime de prevenção e	Registo de manutenção do sistema de despoeiramento e notificação da CCDR em caso de avaria no max. 48 H	OK- Criação de pasta para registo da manutenção com calendarização das intervenções. Queda da chaminé FF14 reportada no dia seguinte ao temporal, dia 05-02-2014, situação corrigida e reportada à APA dia 03/04/2014		
	39/2018 – 11 de Junho	39/2018 - 11 controlo das	Monitorização das fontes pontuais e comunicação dos resultados ao CCDR- , até max. 60 Dias	OK- Comunicação dos dados é feita por sistema informático- Balcão Eletrónico CCDR-N v1.01 – todos os envios são confirmados pelo sistema informático		
Emissões Gasosas			Utilização Laboratórios Acreditados	OK- Lista de Fornecedores de Serviços Lab – GQ-011		
Gasosas			Cumprimento dos VLE	OK-Todas as Fontes cumprem os VLE, quer na 1ª monitorização, quer na 2ª monitorização de 2018.		
	Portaria 190- B/2018 - 2 de Julho	Fixa os limiares mássicos máximos e mínimos dos poluentes	Verificação do cumprimento dos limiares mássicos-quando ultrapassado o mínimo passar a monitorização para 2 x ano	OK- Analise do cumprimento dos limiares mássicos com realização de gráficos, sempre que são ultrapassados a monitorização faz- se 2 x ano,		
	Portarla 190- A/2018 - 2 de	Procedimento para o Cálculo da altura das chaminés	Cumprimento da altura mínima da	Ok- Envio no PDA 2009 esclarecimentos relativos à altura da chaminé FF15- alteração da altura para 13 m de forma a		
	A/2018 – 2 de Julho Elementos detalhados de suporte para o cálculo		chaminé	cumprir o estabelecido		

Âmbito	Requis	ito Legal	Ações a verificar	r Análise da Conformidade		
Emissões Gasosas - COV	Decreto-lei nº 127/2013 – 30 de Agosto	Estabelece limites para as emissões de COV resultantes da utilização de solventes orgânicos	Atividade de enquadramento no Anexo VII: "outros processos de revestimentos, nomeadamente de metais, plásticos, têxteis, tecidos, peliculas e papel"- validar consumo versus limiar	Apesar da atividade estar abrangida no anexo VII verificou-se que o consumo registado em 2015 foi de 0,70 Ton/ano e sendo o limiar de consumo entre 5 a 15 Ton/ano, constatou-se que a instalação não se encontra abrangida devido ao consumo de solventes ser inferior ao limiar de consumo mínimo. (pág. 59		
	Te ma	ellinge sign in all o	Cumprimento dos valores limite estabelecidos para zonas sensíveis e mistas	Medição de Ruído em 2013 suscitou dúvidas à APA que suspendeu o registo EMAS, pedido à Sakthi para fazer nova medição com alteração da metodologia de medição do Ruído Ambiente, por ponto de imagem, após implementação de melhorias, nomeadamente na		
Ruído	Decreto-Lei nº 9/2007 - 17 de Janeiro	Regulamento geral do Ruído	Valores limites de Exposição	insonorização de portão junto ao Tratamento de Superfície e da casa dos aerorefrigeradores junto à macharia decorreu nova medição de Ruído- entre Dez 2014 e Fev. 2015 - relatório ISQ LABVR/00346/15, que APA considerou ser inconclusivo, Janeiro 2016 nova medição Rel LABVR/0121/16 com a conclusão de que a SP Cumpre com os requisitos sonoros legais, após análise APA considera que a SP pode de novo apresentar a Declaração Ambiental para apreciação		
	Commission (III)	Fall regul	Critério de Incomodidade (Diurno e Noturno)	OK- Sakthi Cumpre os Limites de Incomodidade, quer no período Diurno, quer no período Noturno		
		anner 5 ma	Repetição sempre que haja alterações na instalação e periodicidade max. 5 Anos	A Sakthi procedeu durante o ano de 2015 a atualização de Mapa de Ruído afim de poder proceder, se necessário, à implementação de melhorias na insonorização de equipamentos de forma a minimizar o seu impacto junto da população.		
			Classe B e C	Ok- Todos os equipamentos encontram-se		
	Despacho nº 1859/2003 - 30	Instrução técnica para recipientes sob	Identificação / instalação / sinalização dos RAC	devidamente identificados e dentro do prazo de autorização		
Equipamento Sob	de Janeiro	pressão de ar comprimido	Renovação da autorização de funcionamento (max. & anos)	Ok- todos os RAC estão na BD GEL, que 6 meses antes de expirar a validade emite um alerta para a renovação		
Pressão	December 1-1-0	Regulamento de instalação,	Existência de placas de registo	CHILL STRIKE PILLOS		
	Decreto-Lei nº 90/2010 - 22 de	funcionamento, reparação e alteração de equipamento Sob Pressão	Licenciamento	OK- Todos os ESP licenciados, disponíveis		
	Julho		Inspeção	na BD GEL,		
		Estabelece o	RGCIE	Auditoria energética em 18-02-2018.PREN		
	100	sistema de Gestão do	Auditoria Energética	2017/2024, submetido na plataforma		
Energia	Decreto-Lei nº 71/2008 – 15 de	consumo de energia para empresas	Elaboração PREn e Aprovação	eletrónica, sendo a meta para redução de consumo estabelecida de 6% até 2024.		
			Metas para redução de consumos	Em 2015 a SP obteve Certificação segundo Norma ISO 50001 – certificação Energética com validade até 20-08-2021		

SAKTHI PORTUGAL DECLARAÇÃO AMBIENTAL

9. Abreviaturas

APA - Agência Portuguesa do Ambiente

ARH - Administração de Região Hidrográfica

BREF - "Best Available Technologies (BAT) Reference"

CAE - Código das Atividades Económicas

CE - Consumo Especifico

CO - Monóxido de Carbono

COV - Compostos Orgânicos Voláteis

COVNM - Compostos Orgânicos Voláteis Não Metânicos

EE - Energia Elétrica

GAR- Guia de Acompanhamento de Resíduos

GN - Gás Natural

GSL - Gasóleo

IPAC - Instituto Português de Acreditação

IGAMAOT - Inspeção Geral da Agricultura, do Mar, do Ambiente e do

Ordenamento do Território

LA - Licença Ambiental

LER - Lista Europeia de Resíduos

MIRR - Mapa Integrado de Registo de Resíduos

MTD - Melhores Técnicas Disponíveis

Ni - Niquel

NOx - Oxido de Azoto

PCB - Policlorobifenilos

PCDD/PCDF - Dioxinas e Furanos

PCIP - Prevenção e Controlo Integrados da Poluição

PDA - Plano de Desempenho Ambiental

PDM - Plano diretor Municipal

PGS - Plano de Gestão de Solventes

PRCE - Plano de Racionalização de Consumo Energético

RAA - Relatório Ambiental Anual

SIRAPA - Sistema Integrado de Registo da Agência Portuguesa do Ambiente

SMAS - Serviços Municipalizados de Água e Saneamento

SO₂ - Dióxido de Enxofre

SP - Sakthi Portugal, S.A.

VEA - Valor de Emissão Associado

VLE - Valor Limite de Emissão

Zn - Zinco

10. Dados do verificador Ambiental

Nome da Organização:	Sakthi Portugal – Fundição Nodular, S.A.
Endereço da Organização:	Rua Jorge Ferreirinha 679, 4470-314 Maia
Contacto do Responsável Ambiental:	Helena Coimbra
Nº Telefone	229430260
Número de Trabalhadores:	570
Código de Atividade:	2451
CAE:	29320

Nome dos Verificadores:	Ana Jorge / António Silva
Número de Acreditação:	PT-V-0005
	TÜV Rheinland Portugal, Lda.
Denominação e Elementos de Contacto da Autoridade de Execução Competente de que depende a Organização:	Arquiparque, Edifício Zenith (Miraflores) Rua Dr. António Loureiro Borges, n.º9/ 9A, 3º 1495-131 Algés Telef.: +351 21 413 70 40 Fax: +351 21 413 70 45 Elemento de Contacto: Eng.ª Ana Jorge

Ana Jorge

Verificador Ambiental

TÜV Rheinland Portugal

António Silva

Verificador Ambiental

TÜV Rheinland Portugal

Validado em: 06.11.2019

Revisto em: 20.02.2020

11. Declaração do verificador Ambiental Anexo VII

DECLARAÇÃO DO VERIFICADOR AMBIENTAL SOBRE AS ACTIVIDADES DE VERIFICAÇÃO E VALIDAÇÃO (ANEXO VII)

A TÜV Rheinland Portugal, Lda., com o número de registo de verificador ambiental PT-V-0005, acreditado ou autorizado para o âmbito "Produção de Peças de Ferro Fundido Nodular Bruto ou Pintadas por Cataforese." (código NACE: 24.51) declara ter verificado toda a organização, tal como indicado na declaração ambiental, da organização Sakthi Portugal, S.A. com o número de registo PT-000069 cumpre todos os requisitos do Regulamento (CE) nº 1221/2009 do Parlamento Europeu e do Conselho, de 25 de novembro de 2009, alterado pelo Regulamento (UE) 2017/1505, de 28 de agosto e pelo Regulamento (UE) 2018/2026, de 19 de dezembro que permite a participação voluntária de organizações num sistema comunitário de ecogestão e auditoria (EMAS).

Assinando a presente declaração, declaramos que:

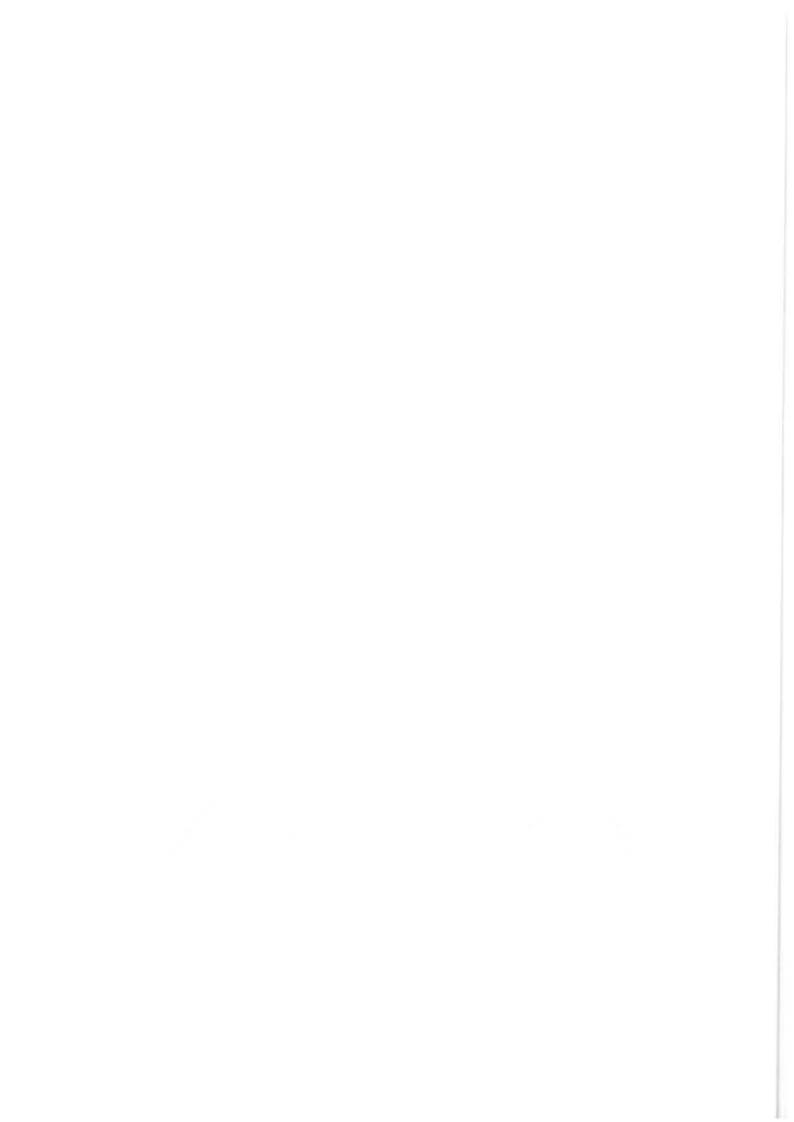
- a verificação e a validação foram realizadas no pleno respeito dos requisitos do Regulamento (CE) nº 1221/2009 na sua atual redação;
- o resultado da verificação e validação confirma que não existem indícios do não cumprimento dos requisitos legais aplicáveis em matéria de ambiente;
- os dados e informações contidos na declaração ambiental da organização reflectem uma imagem fiável, credível e correcta de todas as actividades da organização, no âmbito mencionado na declaração ambiental.

O presente documento não é equivalente ao registo EMAS. O registo EMAS só pode ser concebido por um organismo competente ao abrigo do Regulamento (CE) nº 1221/2009 na sua atual redação. O presente documento não deve ser utilizado como documento autónomo de comunicação ao público.

Feito em Miraflores, em 06/11/2019 Revisto em 20/02/2020

Ana Jorge

Verificador Ambiental N.º 081-EMAS TUV Rheinland Portugal, Lda António Silva


Verificador Ambiental N. 065-EMAS TUV Rheinland Portugal, Lda

> TÜV Rheinland Portugal Inspecções Técnicas Unip., Lda.

> Edificio Zenith (Arquiparque) R. Dr. Ant.º Loureiro Borges, 9, 3.º 1495-131 Algés Portugal

Telf.: +351 21 413 70 40 Fax: +351 21 413 70 45 geral@pt.tuv.com www.tuv.pt

Capital Social: 250.000 euros Contribuinté n.º 502 235 438 Reg. Com. Cascais n.º 18.216

